

Abstract View

Volume 13, Issue 5 (May 1983)

Journal of Physical Oceanography Article: pp. 804–815 | Abstract | PDF (6.20M)

Doppler Sonar Observations of Internal Waves, Wave-Field Structure

R. Pinkel

Marine Physical Laboratory, Scripps Institution of Oceanography. University of California, San Diego, La Jolla, CA 92093

(Manuscript received June 7, 1982, in final form January 17, 1983) DOI: 10.1175/1520-0485(1983)013<0804:DSOOIW>2.0.CO;2

ABSTRACT

During May of 1980 an internal-wave-measurement experiment was conducted from the Research Platform FLIP off the California coast. This paper discusses an 18-day sequence of velocity profiles obtained during the experiment using a pair of Doppler sonars. The sonars Profile to a depth of 700 m, with approximately 20 m depth resolution. Plots of the velocity and shear field indicate the dominance of near-inertial motions. Much of the near-inertial variance can be ascribed to a few identifiable wave groups. The progress of these groups can he tracked for many days. The shear at the base of the mixed layer is often dominated by near-inertial motions propagating vertically through the thermocline rather than wind-forced motions in the mixed layer itself. Power-spectral analysis suggests that the low-frequency component of the wave field is dominated by the near-inertial and tidal peaks and their harmonics. The wisdom in modeling the low-frequency wave field as an "equivalent continuum" is questioned.

Options:

- Create Reference
- Email this Article
- Add to MyArchive
- Search AMS Glossary

Search CrossRef for: • <u>Articles Citing This Article</u>

Search Google Scholar for:

• <u>R. Pinkel</u>

<u>amsinfo@ametsoc.org</u> Phone: 617-227-2425 Fax: 617-742-8718 <u>Allen Press, Inc.</u> assists in the online publication of *AMS* journals.