AMS Home Journals Home

me Journal Archive

Subscribe For Authors H

Help Advanced

Advanced Search Search

Abstract View

Volume 13, Issue 9 (September 1983)

Sign in

Go

Journal of Physical Oceanography Article: pp. 1698–1708 | <u>Abstract</u> | <u>PDF (792K)</u>

Radiation Stress Estimators

S.S. Pawka, D.L. Inman, and R.T. Guza

Shore Processes Laboratory, Scripps Institution of Oceanography, University of California, La Jolla, CA 92093

(Manuscript received December 13, 1982, in final form May 13, 1983) DOI: 10.1175/1520-0485(1983)013<1698:RSE>2.0.CO;2

ABSTRACT

The radiation stresses S_{ii} associated with the propagation of wind-generated

waves are principal driving forces for several important surf-zone processes. The accurate estimation of the onshore flux of longshore-directed mean momentum S_{yx} , using a linear array of pressure sensors, is considered here.

Three analysis methods are examined: integration of two high-resolution directional-spectrum estimators [maximum likelihood (MLM) and a modified version (IMLM)], and a direct estimator of the S_{yx} directional moment (DMM_v) which is developed here.

The S_{yx} estimation methods are compared using numerical simulations and field data from two experiments at Torrey Pines Beach, California. In the first field experiment, IMLM and DMM, estimates of S_{yx} (from a 3-element, 99 m long linear array) showed excellent agreement with a slope array (Higgins *et al.*, 1981) in the frequency range 0.05–0.15 Hz. In the second experiment, IMLM and DMM, estimates of S_{yx} (from a 5-element, 360 m long array) agreed with

Options:

- <u>Create Reference</u>
- Email this Article
- Add to MyArchive
- Search AMS Glossary
- Search CrossRef for: • <u>Articles Citing This Article</u>

Search Google Scholar for:

- S.S. Pawka
- D.L. Inman
- R.T. Guza

values of S_{yx} obtained from a nearby orthogonal-axis current meter for the frequency range 0.06–0.11 Hz. The integration of the MLM directional spectrum estimates yields biased (low) values of S_{yx} . Although the DMM method is used here for the estimation of S_{yx} , it can easily be adapted for the calculation of any arbitrary directional moment. While conventional methods are shown to be deficient in S_{yx} estimation, they provide accurate estimates of S_{xx} , the onshore flux of onshore-directed momentum.

© 2008 American Meteorological Society <u>Privacy Policy and Disclaimer</u> Headquarters: 45 Beacon Street Boston, MA 02108-3693 DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826 <u>amsinfo@ametsoc.org</u> Phone: 617-227-2425 Fax: 617-742-8718 <u>Allen Press, Inc.</u> assists in the online publication of *AMS* journals.