

AMERICAN METEOROLOGICAL SOCIETY

AMS Journals Online

AMS Home Journ

Journals Home

Journal Archive

Subscribe

For Authors

Help

Advanced Search

Search

Abstract View

Volume 13, Issue 10 (October 1983)

Journal of Physical Oceanography

Article: pp. 1847–1867 | Abstract | PDF (2.17M)

Annual and Interannual Variability in the Kuroshio Current System

Keisuke Mizuno

Tohoku Regional Fisheries Research Laboratory, Shiogama Miyagi Prefect, Japan

Warren B. White

Scripps Institution of Oceanography, La Jolla, CA 92037

(Manuscript received July 26, 1982, in final form June 21, 1983) DOI: 10.1175/1520-0485(1983)013<1847:AAIVIT>2.0.CO;2

ABSTRACT

Individual, seasonal, 300 m temperature maps were constructed over the Kuroshio Current System from 130°E to 170°W, for a 4-year period from summer 1976 through spring 1980, using TRANSPAC XBT data and JODC temperature/depth data. Quasi-stationary meanders in the Kuroshic Current System occurred at 137°C (i.e., Kuroshio Meander), at 144°E and 150°E (i.e., lee-wave meanders), and near 160°E (i.e., meander over the Shatsky Rise). A composite of the paths of the Kuroshio (i.e., the 12°C isotherm) from the individual seasonal maps, and the total variance map, finds nodes (i.e., minima) and anti-nodes (i.e., maxima) of variability to have existed along the mean Kuroshio path. The anti-nodes coincided with the location of the quasi-stationary meanders, the nodes in between. Zonal propagation of temperature anomalies accounted for 20–30% of the total interannual variance. These temperature anomalies propagated eastward at 0.5–1.5 cm s⁻¹ in the region 140°–155°E, and westward at –1 to –2 cm s⁻¹ in the region 155°E–175°W. In addition to this wave propagation, 31% of the interannual variance in

Options:

- Create Reference
- Email this Article
- Add to MyArchive
- Search AMS Glossary

Search CrossRef for:

• Articles Citing This Article

Search Google Scholar for:

- Keisuke Mizuno
- Warren B. White

temperature could be explained by two empirical standing-wave modes. Within these two modes, spatial coherency in variability existed between the Kuroshio Meander, the two lee-wave meanders east of Japan and the meander over the Shatsky Rise. Both spatial patterns of variability fluctuated with a 1-year decorrelation time scale, with maximum interannual variability occurring in fall/winter and minimum interannual variability in spring/summer.

In the latter part of the 4-year period (1979–80), the Kuroshio Meander became weak and the Kuroshio Extension was displaced southward, from 36–37°N during the first 2 years to 34°N during the latter two years. Associated with these large scale changes, the quasi-stationary meander pattern in the Kuroshio Extension became unstable, associated with increased eddy activity and ring production. In fact, ring production doubled, i.e., from 5 per year to 10 rings per year, from what it was during the previous 3 years. Prior to this regimal change, the Kuroshio Extension bifurcated near the Shatsky Rise (160°E) with a secondary branch of the Kuroshio Extension extending

northeastward along the Shatsky Rise to 40°N, where it turned east, and with the main branch extending eastward along 36°N. After the regional change, this bifurcation occurred much farther to the west near 150°E.

© 2008 American Meteorological Society Privacy Policy and Disclaimer Headquarters: 45 Beacon Street Boston, MA 02108-3693

DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826 amsinfo@ametsoc.org_Phone: 617-227-2425 Fax: 617-742-8718

Allen Press, Inc. assists in the online publication of AMS journals.