

Abstract View

Volume 12, Issue 11 (November 1982)

Journal of Physical Oceanography Article: pp. 1245–1259 | <u>Abstract</u> | <u>PDF (860K)</u>

Statistics of Richardson Number and Instability in Oceanic Internal Waves

Yves Desaubies

Woods Hole Oceanographic Institution, Woods Hole, MA 02543

Woollcott K. Smith

Department of Statistics, Temple University, Philadelphia, PA 19122

(Manuscript received February 25, 1982, in final form July 16, 1982) DOI: 10.1175/1520-0485(1982)012<1245:SORNAI>2.0.CO;2

ABSTRACT

The probability density function (pdf) of Richardson number in a Gaussian internal-wave field is derived. It is found to compare well with available data. The pdf depends on only parameter λ , the rms stain in the field, which is very weakly dependent on depth if at all. The probability Ri<0.25 is a very sensitive function of λ , which is about $\lambda \approx 0.5$ in the ocean. Numerical simulations of vertical profiles Ri(z) are calculated based on a set of stochastic differential equations. The statistics of the vertical distributions of regions where Ri<0.25 is investigated and a simplified mixing model based on the stochastic differential equations is derived. We conclude that shear instability is a significant factor in the dissipation of internal waves.

Options:

- <u>Create Reference</u>
- Email this Article
- Add to MyArchive
- Search AMS Glossary

Search CrossRef for:

• Articles Citing This Article

Search Google Scholar for:

- <u>Yves Desaubies</u>
- Woollcott K. Smith

<u>amsinfo@ametsoc.org</u> Phone: 617-227-2425 Fax: 617-742-8718 <u>Allen Press, Inc.</u> assists in the online publication of *AMS* journals.