

# AMERICAN METEOROLOGICAL SOCIETY

**AMS Journals Online** 

AMS Home Journals Ho

Journals Home Journal Archive

Subscribe

For Authors

Help

Advanced Search

Search



## **Abstract View**

Volume 11, Issue 5 (May 1981)

### Journal of Physical Oceanography

Article: pp. 658–675 | Abstract | PDF (1.28M)

# Mesoscale Thermohaline, Sound Velocity and Baroclinic Flow Structure of the Pacific Subtropical Front During the Winter of 1980

#### Gunnar I. Roden

Department of Oceanography, University of Washington, Seattle, 98195

(Manuscript received October 27, 1980, in final form January 30, 1981) DOI: 10.1175/1520-0485(1981)011<0658:MTSVAB>2.0.CO;2

#### **ABSTRACT**

The three-dimensional thermohaline. sound velocity and baroclinic flow structure of the. pacific sub-tropical front during January and February 1990 are discussed. The front is meander-like, with a wavelength of 180 km, a wave amplitude of 55 km, and is centered around latitude 30°N. On 37 km spatial and 10-day time scales the front barely moves, but its intensity increases due to an intrusion of cold and low-salinity water from the north. The front is nearly vertical in the upper 130 m and slopes southward below. The strongest crossfrontal differences are 1.7°C for temperature, 0.6‰ for salinity. 0.4 kg m² for density and 13 m s<sup>-1</sup> for sound velocity and occur beneath the base of the mixed Layer. The baroclinic flow field indicates a meandering current with maximum speeds of 0.3 m s<sup>-1</sup>. Cyclonic eddies occur north and anti-cyclonic eddies occur south of the front. Satellite-tracked drifters confirm these patterns. Vertical shear of the baroclinic flow in the frontal region varies between 10<sup>-4</sup>

#### Options:

- Create Reference
- Email this Article
- Add to MyArchive
- Search AMS Glossary

#### Search CrossRef for:

• Articles Citing This Article

#### Search Google Scholar for:

• Gunnar I. Roden

and  $10^{-3}$  s<sup>-1</sup> and is strongest below the base of the mixed layer. The principle of conservation of potential vorticity is applied to fronts and compared to observations.



© 2008 American Meteorological Society Privacy Policy and Disclaimer Headquarters: 45 Beacon Street Boston, MA 02108-3693

DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826

<u>amsinfo@ametsoc.org</u> Phone: 617-227-2425 Fax: 617-742-8718 <u>Allen Press, Inc.</u> assists in the online publication of *AMS* journals.