

Abstract View

Volume 11, Issue 11 (November 1981)

Journal of Physical Oceanography Article: pp. 1474–1480 | <u>Abstract</u> | <u>PDF (567K)</u>

Observations of the Horizontal Interactions between the Internal Wave Field and the Mesoscale Flow

Ellen D. Brown and W. Brechner Owens

Woods Hole Oceanographic Institution, Woods Hole, MA 02543

(Manuscript received December 1, 1980, in final form July 17, 1981) DOI: 10.1175/1520-0485(1981)011<1474:OOTHIB>2.0.CO;2

ABSTRACT

Momentum and energy transfers from the mesoscale horizontal velocity shear to the internal wave field have been deduced from an analysis of a closely spaced, 25 km, moored current-meter array. The correlation between the lowfrequency horizontal shear and internal-wave-field continuum effective stress

implies a significant horizontal eddy viscosity of O $(10^6 \text{ cm}^2 \text{ s}^{-1})$, somewhat larger than predicted by Müller (1976). A simple steady-state energy balance for the internal wave field using the observed correlation between the internal wave kinetic energy and the square of the low-frequency shear implies a 10-day relaxation time for the internal-wave Acid and a combined vertical viscosity and horizontal diffusivity not significantly different from zero. These estimates are within the experimental uncertainty of previous observational analyses.

Options:

- <u>Create Reference</u>
- Email this Article
- Add to MyArchive
- Search AMS Glossary

Search CrossRef for:

• Articles Citing This Article

Search Google Scholar for:

- Ellen D. Brown
- W. Brechner Owens

