

Abstract View

Volume 9, Issue 6 (November 1979)

Journal of Physical Oceanography Article: pp. 1112–1125 | Abstract | PDF (796K)

A Theory of the Mean Flow Driven by Long Internal Waves in a Rotating Basin, with Application to Lake Kinneret

Hsien Wang Ou

Joint Program in Physical Oceanography, Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543

John R. Bennett

Environmental Research Laboratories, Great Lakes Environmental Research Laboratory, NOAA, Ann Arbor, MI 48104

(Manuscript received April 17, 1978, in final form July 25, 1979) DOI: 10.1175/1520-0485(1979)009<1112:ATOTMF>2.0.CO;2

ABSTRACT

The rectified flow induced by wind-driven internal seiches in a rotating lake is studied. Friction and nonlinearity combine to generate a secondary mean flow which is calculated analytically for the case of a uniform depth lake and numerically for variable depth.

The theory is applied to Lake Kinneret, the former Sea of Galilee, where the diurnal wind forcing produces a large internal Kelvin wave and which has a strong cyclonic mean flow. The uniform depth model reproduces the diurnal response adequately, but variable depth is required to reproduce the mean flow.

Options:

- Create Reference
- Email this Article
- Add to MyArchive
- Search AMS Glossary

Search CrossRef for:

• Articles Citing This Article

Search Google Scholar for:

- Hsien Wang Ou
- John R. Bennett

DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826 <u>amsinfo@ametsoc.org</u>Phone: 617-227-2425 Fax: 617-742-8718 <u>Allen Press, Inc.</u> assists in the online publication of *AMS* journals.