

Abstract View

Volume 8, Issue 2 (March 1978)

Journal of Physical Oceanography Article: pp. 225–232 | <u>Abstract</u> | <u>PDF (540K)</u>

Non-Tidal Variability in the Chesapeake Bay and Potomac River: Evidence for Non-Local Forcing

Dong-Ping Wang

Chesapeake Bay Institute, The Johns Hopkins University, Baltimore, Md. 21218

Alan J. Elliott

SACLANT ASW Research Centre, La Spezia, Italy

(Manuscript received March 31, 1977, in final form November 22, 1977) DOI: 10.1175/1520-0485(1978)008<0225:NTVITC>2.0.CO;2

ABSTRACT

Non-tidal variability in the Chesapeake Bay and Potomac River, and its relation to atmospheric forcing, is examined from two-month sea level and bottom current measurements. The dominant sea level fluctuations in the Bay had a period of 20 days. and were the result of up-Bay propagation of coastal sea level fluctuations generated by the alongshore winds. Consequently, water was driven out of the Bay by the northward/up-Bay wind and driven into the Bay by the southward/down-Bay wind, through the coastal Ekman flux.

There were also large sea level fluctuations at periods of 5 and 2.5 days. The 5day fluctuations were driven by both the coastal sea level changes and the local lateral winds (Ekman effect). The 2.5-day fluctuations were seiche oscillations driven by the local longitudinal winds.

In the Potomac River, the sea level fluctuations were induced non-locally by motions in the Bay; the associated volume fluxes appeared to have been

Options:

- <u>Create Reference</u>
- Email this Article
- <u>Add to MyArchive</u>
- Search AMS Glossary

Search CrossRef for:

• Articles Citing This Article

Search Google Scholar for:

• Dong-Ping Wang

Alan J. Elliott

confined to the upper layer. The near-bottom currents were mainly driven by the surface slopes which were also set up non-locally, by the longitudinal wind over the Bay. In general, the near-bottom current and sea level/volume flux fluctuations were not coherent. A notable exception, however, was found for the 2.5-day fluctuations which were vertically coherent and showed significant upward phase propagation.

Because of the significance of non-local forcing, an adequate model for the non-tidal estuarine circulation would need to include the effects of interaction with the adjacent larger estuary or the coastal ocean. Also, site-specific experiments should be complemented by far-field measurements to determine non-local conditions.

© 2008 American Meteorological Society <u>Privacy Policy and Disclaimer</u> Headquarters: 45 Beacon Street Boston, MA 02108-3693 DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826 <u>amsinfo@ametsoc.org</u> Phone: 617-227-2425 Fax: 617-742-8718 <u>Allen Press, Inc.</u> assists in the online publication of *AMS* journals. top 📥