

AMERICAN METEOROLOGICAL SOCIETY

AMS Journals Online

AMS Home Jour

Journals Home

Journal Archive

Subscribe

For Authors

Help

Advanced Search

Search

Abstract View

Volume 7, Issue 1 (January 1977)

Journal of Physical Oceanography

Article: pp. 110–117 | Abstract | PDF (510K)

Determination of the Aqueous Sublayer Thicknesses at an Air-Water Interface

Robert L. Street and Woodruff Miller Jr.

Department of Civil Engineering, Stanford University, Stanford, Calif. 94305

DOI: 10.1175/1520-0485(1977)007<0110:DOTAST>2.0.CO;2

ABSTRACT

The thicknesses of the viscous and thermal sublayers in the water beneath an air-water interface are obtained by an application of the theory of rough-wall flows to results obtained in a laboratory wind, water-wave research facility. For fully rough flow the dimensionless viscous sublayer thickness δ_{v+} is proportional to the square root of the roughness Reynolds number h_+ based on mean roughness height, i.e., $\delta_{v+} = 0.37 h_+^{\text{frac}12}$;. In addition, if Pr is the (molecular) Prandtl number, the dimensionless thermal sublayer thickness $\delta_{t+} = 0.37 h_+^{\text{frac}12}$;.

Options:

- Create Reference
- Email this Article
- Add to MyArchive
- Search AMS Glossary

Search CrossRef for:

• Articles Citing This Article

Search Google Scholar for:

- Robert L. Street
- Woodruff Miller

top 📤