

Volume 7, Issue 3 (May 1977)

Journal of Physical Oceanography Article: pp. 415–421 | Abstract | PDF (372K)

Three-Layer Circulations in Estuaries and Harbors

Robert R. Long

Departments of Earth Sciences and Mechanics and Materials Science, The Johns Hopkins University, Baltimore, Md. 21218

(Manuscript received October 11, 1976, in final form February 7, 1977) DOI: 10.1175/1520-0485(1977)007<0415:TLCIEA>2.0.CO;2

ABSTRACT

A theory is developed for the three-layer circulation in an overmixed estuary (finite fresh-water influx) or harbor (zero fresh-water influx) accompanying a two-layer structure in the large body of water outside. A determinate act of algebraic equations is derived for the general case and the form of the equations shows that for zero fresh-water influx the discharge q_1 from a harbor is

proportional to the square root of the density difference between the two outside fluids.

The problem is solved completely when there is a uniform depth H of the fluids inside and outside the harbor, when the fresh-water influx is zero, and when the two layers of fluid outside the harbor are of equal thicknesses. The solution shows that the outflowing layer of water has a thickness d=H/2 and a flux $q_1 = HW(H\Delta b_0)^{1/2}/8$, where W is the width at the constriction and Δb_0 the

buoyancy difference between the two outside layers of water.

Options:

- Create Reference
- Email this Article
- Add to MyArchive
- Search AMS Glossary

Search CrossRef for: • Articles Citing This Article

Search Google Scholar for: • Robert R. Long

A laboratory model reproduced the three-layer circulation of the theory. The outflowing fluid was quite turbulent and this made the observation of the layer thickness uncertain but it appeared to be close to the value d=H/2 of the theory.

© 2008 American Meteorological Society Privacy Policy and Disclaimer Headquarters: 45 Beacon Street Boston, MA 02108-3693 DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826 <u>amsinfo@ametsoc.org</u> Phone: 617-227-2425 Fax: 617-742-8718 <u>Allen Press, Inc.</u> assists in the online publication of *AMS* journals.