

AMERICAN METEOROLOGICAL SOCIETY

AMS Journals Online

AMS Home Journals H

Journals Home Journal Archive

Subscribe

For Authors

Help

Advanced Search

Search

Abstract View

Volume 7, Issue 6 (November 1977)

Journal of Physical Oceanography

Article: pp. 882–891 | Abstract | PDF (760K)

Measurement of the High-Frequency Spectrum of Ocean Surface Waves

Hisashi Mitsuyasu

Research Institute for Applied Mechanics, Kyushu University, Hakozaki, Fukuoka 812, Japan

(Manuscript received May 3, 1977, in final form June 22, 1977)

DOI: 10.1175/1520-0485(1977)007<0882:MOTHFS>2.0.CO;2

ABSTRACT

High-frequency spectra of wind-generated ocean waves were measured at an ocean research tower of Kyushu University using a fast-response wave recorder and an electronic differentiating circuit. Wind waves generated by a northeast wind (speed $U_{10.5}$ =8 m s⁻¹, fetch F=2 km) were superimposed on the swell from the north and in a stationary state.

The equilibrium range of the wave spectrum, where the spectral form is given by was clearly observed in a frequency range $f_m < f \le 4$ Hz of the measured spectrum, where g is the acceleration of gravity and f_m the spectral peak frequency. The measured value of the equilibrium constant β was 0.016 for the dimensionless fetch \hat{F} (= gF/U_*^2 =1.3×10⁵ (where U_* is the friction velocity of the wind), which was very close to the value obtained by Burling (1959).

Options:

- Create Reference
- Email this Article
- Add to MyArchive
- Search AMS Glossary

Search CrossRef for:

Articles Citing This Article

Search Google Scholar for:

Hisashi Mitsuyasu

However, the equilibrium spectrum of the gravity wave range occurred only below 4 Hz, and the spectral form in the gravity-capillary range (f>5 Hz) was given approximately by> where σ is the surface tension, ρw the density of water and k the wavenumber. The measured value of the dimensionless constant α_g was 0.012 for the frequency range 6 Hz $\leq f\leq$ 14 Hz of the measured spectrum, which was very close to the values measured in our laboratory experiment ($U_r\approx 40~{\rm cm~s}^{-1}$ at $F=5.85~{\rm m}$ and $8.26~{\rm m}$). The result confirmed that the spectral form in the gravity-capillary range is really independent of the fetch.

© 2008 American Meteorological Society Privacy Policy and Disclaimer Headquarters: 45 Beacon Street Boston, MA 02108-3693 DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826

amsinfo@ametsoc.org Phone: 617-227-2425 Fax: 617-742-8718
Allen Press, Inc. assists in the online publication of AMS journals.