

Abstract View

Volume 6, Issue 1 (January 1976)

Journal of Physical Oceanography Article: pp. 57–65 | Abstract | PDF (863K)

The Behavior of a Barotropic Eddy on a β -Plane

Eric Firing

Joint Program in Oceanography, Massachusetts Institute of Technology/woods Hole Oceanographic institution, Woods Hole, Mass. 02543

Robert C. Beardsley

Department Of Meteorology, Massachusetts Institute of Technology, Cambridge 02139

(Manuscript received April 1, 1975, in final form June 9, 1975) DOI: 10.1175/1520-0485(1976)006<0057:TBOABE>2.0.CO;2

ABSTRACT

An experimental method for producing an isolated eddy in a laboratory tank is described, along with the simple viscous theory of the behavior of the eddy in an ordinary cylindrical tank without the β -effect. The linear inviscid theory incorporating the β -effect is then developed as an initial value problem, and the solution is found as a summation of normal Rossby wave modes of the basin. This theoretical solution is compared with results from laboratory experiments and with numerical simulations obtained for the "sliced-cylinder" laboratory model. It is found that nonlinear effects lead to a cyclonic circulation in the northern half of the tank and an anticyclonic circulation in the southern half. Two simple models are developed to account for these induced circulations.

Options:

- <u>Create Reference</u>
- Email this Article
- Add to MyArchive
- Search AMS Glossary

Search CrossRef for:

• Articles Citing This Article

Search Google Scholar for:

- Eric Firing
- <u>Robert C. Beardsley</u>

<u>amsinfo@ametsoc.org</u> Phone: 617-227-2425 Fax: 617-742-8718 <u>Allen Press, Inc.</u> assists in the online publication of *AMS* journals.