

Abstract View

Volume 1, Issue 4 (October 1971)

Journal of Physical Oceanography Article: pp. 241–248 | <u>Abstract</u> | <u>PDF (563K)</u>

Surface Thermal Boundary Condition for Ocean Circulation Models

Robert L. Haney

Dept. of Meteorology, Naval Postgraduate School, Monterey, Calif.

(Manuscript received March 1, 1971, in final form June 7, 1971) DOI: 10.1175/1520-0485(1971)001<0241:STBCFO>2.0.CO;2

ABSTRACT

By employing a heat budget analysis appropriate to zonally and time averaged conditions within the atmosphere, it is shown that the net downward heat flux Q at the ocean's surface can be expressed as $Q = Q_2 (T_A^* - T_s)$, where T_A^* is an apparent atmospheric equilibrium temperature, T_s the sea surface temperature, and Q_2 a coefficient determined from the zonally and time averaged data. The latter coefficient, which is of the order of 70 ly day⁻¹ (°C)⁻¹, varies with latitude by as much as 20%. It is suggested that the use of the above relation as a flux-type thermal boundary condition would allow for large-scale thermal coupling of ocean and atmosphere. The more common use of specified T_s as a

boundary condition clearly does not allow for such coupling.

Options:

- <u>Create Reference</u>
- Email this Article
- Add to MyArchive
- Search AMS Glossary

Search CrossRef for:Articles Citing This Article

Search Google Scholar for:

Robert L. Haney

