

Abstract View

Volume 4, Issue 4 (October 1974)

Journal of Physical Oceanography Article: pp. 542–556 | <u>Abstract</u> | <u>PDF (1.15M)</u>

Two-layer Exchange in an Estuary Basin, with Special Reference to the Baltic Sea

Pierre Welander

Dept. of Oceanography, University of Washington, and Oceanographic Institute, University of Gothenburg

(Manuscript received February 28, 1974, in final form May 20, 1974) DOI: 10.1175/1520-0485(1974)004<0542:TLEIAE>2.0.CO;2

ABSTRACT

Stationary and transient states of a two-layer fjord-type estuary are discussed analytically. The forcing functions are the outer salinity S_0 , the fresh-water

supply q_t , and a meteorologically forced barotropic transport q_m . Forced

nonlinear, time-dependent cases have been studied numerically. Some associated laboratory experiments are described.

The main results obtained are as follows: (i) A single steady state exists; this is approached in an exponential-like way. (ii) The total mixing through the interface must vary with depth (decrease for increasing interface depth) to allow a stable steady state. (iii) The static stability increases with increasing fresh-water supply, up to a critical value where the two-layer model breaks down. (iv) An added oscillatory component in S_0 increases and in q_f decreases

the estural salinity and the static stability. The effect of an oscillatory q_m may

Options:

- Create Reference
- <u>Email this Article</u>
 Add to MyArchive
- <u>Add to MyAlenive</u>
 Search AMS Glossary

Search CrossRef for:

• Articles Citing This Article

Search Google Scholar for:Pierre Welander

go in either direction. (v) The statistical steady state is sensitive to certain high-order statistical features of the forcing functions. It is suggested that changes in such statistical features, rather than changes in mean forcing conditions, may explain observed physical-chemical secular variations in the Baltic, in particular the drop of oxygen concentrations of the deep water.

© 2008 American Meteorological Society <u>Privacy Policy and Disclaimer</u> Headquarters: 45 Beacon Street Boston, MA 02108-3693 DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826 <u>amsinfo@ametsoc.org</u> Phone: 617-227-2425 Fax: 617-742-8718 <u>Allen Press, Inc.</u> assists in the online publication of *AMS* journals.