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Introduc tion
The ubiquitous presence of internal 
waves in the ocean has long been rec-
ognized; however, over the last few 
decades, there has been a significant 
resurgence of interest in internal waves, 
mainly due to a proposition that insta-
bilities and breaking internal waves can 
be a significant source of turbulence and 
diapycnal (across density surfaces) mix-
ing in the ocean (Munk, 1966; Armi, 
1978; Munk and Wunsch, 1998). Indeed, 
evidence from many open-ocean experi-
ments supports the conjecture that the 
oceanic internal wave field is the only 
serious candidate for the supply of 
energy for diapycnal mixing (Kunze and 
Toole, 1997; Polzin et al., 1997; Ledwell 
et al., 1998; Gregg et al., 1999). 

Research on internal waves can be 
classified into three broad categories: 
(1) generation, (2) propagation and 
interaction, and (3) dissipation and 
turbulent mixing. Excellent reviews 
that provide insightful perspectives into 
these pieces abound (e.g., Garrett and 
Munk, 1979; Müller et al., 1986; Thorpe, 
2004). At the bottom end of this chain 
of processes are the small-scale insta-
bilities and wave breaking that lead to 

dissipation and turbulent mixing. Mixing 
can take place in the ocean interior 
through wave-wave interactions that lead 
to parametric instabilities and critical 
layers. In addition to direct interior mix-
ing, internal waves reflecting off topog-
raphy can lead to energetic mixing due 
to localized wave breaking that is several 
orders of magnitude greater than that 
arising in the open ocean (Alford et al., 
2011). The mixed fluid is then advected 
and stirred into the oceanic interior 
(Ivey and Nokes, 1989). As such, several 
studies have been conducted with the 
goal of understanding small-scale pro-
cesses that can transfer energy from tidal 
(barotropic) flows to baroclinic tides 
and higher-frequency nonlinear internal 
waves (hereinafter referred to as NLIWs) 
such as internal solitary waves (ISWs), 
solibores, and internal boluses, and, ulti-
mately, to turbulent mixing (Apel et al., 
1985; Ostrovsky and Stepanyants, 1989; 
Sandstrom and Oakey 1995; Klymak and 
Moum, 2003; Carter et al., 2005).

Despite the large amount of existing 
research on turbulent mixing resulting 
from internal waves, much remains to 
be discovered, especially with regard 
to the structure and ultimate fate (dis-
sipation and mixing) of NLIWs. For 
example, Klymak and Moum (2003) 
observed a sequence of three NLIWs of 
elevation over Oregon’s continental shelf, 
but little is know about how they form, 
how far onshore they propagate, and 
how they dissipate. More importantly, 
robust (dynamic) parameterizations 
of internal wave dissipation, for use in 
large-scale ocean general circulation 
models where such small-scale processes 
are not explicitly resolved, are still a sub-
ject of active research (e.g., Hosegood 
et al., 2004). This situation can be mainly 
attributed to the incomplete state of 
knowledge on the dynamics and fate of 
NLIWs and the inherent difficulty in 
modeling turbulence. 

The research described in this article 
was motivated in part by the desire to 
explain the mechanisms that form non-
linear propagating features on coastal 
shelves. Although a number of field 
measurement campaigns document 
their existence (e.g., Klymak and Moum, 
2003; Hosegood et al., 2004; Carter 
et al., 2005), little is known about their 
formation or the physics governing their 
propagation. In particular, due to their 
strongly nonlinear nature, it is not clear 
whether these features are solitary waves 
or gravity currents. Such NLIWs are 
thought to be prime candidates for trans-
porting mass and sediment (Hosegood 
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Abstr ac t. The subject of internal waves interacting with bottom topographic 
features in the ocean has received much attention in the past few decades. This 
heightened interest is mainly due to a conjecture that breaking internal waves at 
boundaries can be a significant source of turbulence, leading to mixing and transport 
in the ocean. In this paper, we present results from high-resolution three-dimensional 
numerical simulations of an internal wave interacting with a shelf break in a linearly 
stratified fluid in order to highlight the instabilities that contribute to wave breaking 
over topography. The results show the development of a nonlinear internal bolus 
(a vortex core of dense fluid) that moves upslope as a result of the interaction and 
subsequent breaking of the internal wave. We present details of the different stages of 
the interaction process that lead to wave breakdown and formation of internal boluses 
and their subsequent evolution toward smaller scales of motion and turbulence as 
they propagate onshore. 
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et al., 2004). Here, a solitary wave can 
be defined as a wave of permanent form 
that maintains its structure through a 
balance between dispersion that tends 
to broaden its crest and nonlinear effects 
that tend to steepen it. By contrast, 
gravity currents appear when fluid of 
one density propagates (intrudes) into 
another fluid of different density. 

In this article, we build on 
our previously published results 
(Venayagamoorthy and Fringer, 2007) 
from highly resolved three-dimensional 
numerical simulations of a vertical 

mode-1 internal wave interacting with a 
critical slope (i.e., the wave characteristic 
slope matches the topographic slope). 
The new aspects that are addressed in 
this paper focus on the instabilities that 
occur in the slope region as well as on 
the shelf. We present details of the differ-
ent stages of the interaction process that 
leads to wave breakdown and formation 
of vortex cores (or internal boluses) 
and their subsequent evolution toward 
smaller scales of motion and turbulence 
as they propagate onshore. 

Problem Setup and 
Computational Approach
The well-known Navier–Stokes equa-
tions for conservation of momentum 
and the continuity equation for conser-
vation of mass govern the behavior of a 
fluid. These equations, in conjunction 
with the density transport equation, 
were solved using the large-eddy simula-
tion (LES) code developed by Fringer 
and Street (2003) in the computational 
domain shown in Figure 1 (the lateral 
width W = 0.5 m). This code employs 
the fractional-step method of Zang et al. 
(1994) using a finite-volume (control 
volume) formulation on a curvilinear 
coordinate (boundary-fitted) grid with a 
rigid lid (see Figure 1b). 

A linear background density stratifica-
tion is imposed as shown in the sche-
matic in Figure 1, with the Brunt-Väisälä 
(or buoyancy) frequency N = 0.57 rad s–1 

in a depth of D = 60 cm. At the left end 
of the domain shown in Figure 1, a verti-
cal mode-1 internal wave given by

u(0,z,t) = U0 cos(mz) sin(ωt)

is imposed. Note that this relationship 
implies normal incidence of the wave 
on the topography and hence ignores 
any alongshore (y) variation in the 
incoming wave. Here, U0 is the veloc-
ity amplitude of the forcing, m is the 
vertical wavenumber corresponding to 
a mode-1 internal wave with m = π/D, 
ω is the forcing frequency, and u is the 
cross-shore velocity component. It is 
worth noting here that for an internal 
wave mode impinging on a slope, it can 
be shown that the presence of the slope 
effectively decouples the modal structure 
of the incident wave into wave beams 
(Thorpe and Haines, 1987; Thorpe, 
1999). Hence, in a continuously stratified 
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Figure 1. (a) Schematic depicting the computational domain and setup used in the simula-
tions for this study. A mode-1 internal wave is imposed at the left boundary of the domain 
with a frequency ω = 0.33 rad s–1 and wavelength λ = 2π/k = 1.713 m. The topographic 
slope angle θ is chosen such that it is critical for the given wave frequency. The topographic 
slope length is Ls = D = 0.6 m, which implies that when θ = π/2, the reflection coefficient 
will be 1, and therefore there will be no internal boluses. The schematic also shows the 
decomposition of the wave mode into a pair of upward (U) and downward (D) propagating 
wave beams. For clarity, only the reflection of the downward-propagating beam is extended 
to the slope region. (b) The three-dimensional computational grid used to discretize the 
domain shown in (a). Every eighth grid cell is plotted for clarity.
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fluid of finite depth, a mode can be 
described as a superposition of pairs of 
phase-locked upward- and downward-
propagating beams. Therefore, although 
beams are not apparent (at least visually) 
in the mode-1 propagation dynamics, 
the slope of their propagation relative 
to the topographic slope is an impor-
tant parameter in the present analysis. 
Boundary conditions for the cross-shore 
(horizontal) velocity u are no slip on the 
bottom boundary, free slip at the top 
boundary, and no flux (gradient-free) at 
the right boundary. The vertical velocity 
has a no-flux boundary condition at both 
top and bottom boundaries and free-slip 
boundary conditions on all other walls. 
The grid size is 512 × 32 × 128 for the 
three-dimensional simulations. A rough 
estimate of the Kolmogorov turbulence 
dissipation microscale is about 1 mm 
using a characteristic length scale of 

5 cm, a characteristic velocity scale of 
U0 = 4 cm s–1, and a kinematic viscosity 
of ν = 10–5 m2 s–1 (which is higher in the 
simulations to increase the size of the 
Kolmogorov scale). With a longitudinal 
grid spacing of 15 mm, and vertical grid 
spacing of 5 mm in the deep region and 
1.6 mm in the shallow region, the lon-
gitudinal grid spacing is about 15 times 
larger than the Kolmogorov microscale, 
and the largest vertical grid spacing is 
five times larger. 

Wave-Slope Inter ac tion 
and Formation of 
Internal Boluses
Figure 2 depicts the interaction of an 
incoming highly nonlinear mode-1 
internal wave with a critical slope 
(i.e., when tan θ/tan α = 1, see Figure 1) 
using a time sequence of density iso-
surfaces (or isopycnals, which are 

constant density surfaces). As Figure 2a 
shows, the isopycnals steepen, which 
leads to wave breaking, causing the 
isopycnals to fold up, resulting in the 
formation of a sharp front around which 
the wave overturns (see Figure 2a,b). 
These results are consistent with obser-
vations made in laboratory experiments 
of internal waves interacting with slopes 
by Dauxois et al. (2004) and Ivey and 
Nokes (1989). Soon after, the overturned 
lump of fluid surges upslope as the flow 
oscillates back onshore (Figure 2c). The 
strong distortion (heaving) of isopycnals 
leads to wave breaking and formation 
of dense vortex cores. The surging bolus 
of fluid travels over the shelf break and 
is propelled onto the shelf as depicted 
in Figure 2d as a blob of dense fluid, 
hereafter referred to as an internal bolus. 
This bolus then propagates shoreward 
(see Figure 2e,f) and slowly dissipates 
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Figure 2. Three-dimensional 
density isosurfaces of a non-
linear mode-1 internal wave 
interacting with a critical 
shelf slope. For clarity, only 
the right half of the domain 
from x = 4.6 to 6.9 m is 
shown and time is normal-
ized by the wave period 
T = 19.2 s. The isosurface val-
ues are Δρ/ρ0 = 0.0115 (red), 
0.0125 (blue), 0.0135 (green), 
and 0.0145 (magenta), and 
the sideline plane shows the 
density field as indicated by 
the color bar.
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due to further instabilities (see discus-
sion that follows). 

Figure 3 shows a time sequence of an 
internal bolus that propagates onshelf 
as a result of the wave-slope interaction 
process depicted in Figure 2. At time 
t /T = 6.0 (also at earlier times—not 
shown), the bolus is essentially two 
dimensional. In Figure 3b, some lateral 
instabilities begin to develop, and they 
propagate across the bolus further in 
time, as Figure 3c and d show, respec-
tively. These instabilities are strikingly 
similar to the lobe and cleft instabilities 
observed in gravity current experiments, 
suggesting that the initial instability 
that occurs at the bolus front might 
be three dimensional (Simpson, 1972, 
1997). Furthermore, through the use 
of gravity current scaling (Maxworthy 

et al., 2002), Venayagamoorthy and 
Fringer (2007) determined that these 
features propagate more like gravity cur-
rents than solitary waves. 

T ypes of Instabilities that 
Lead to Wave Breaking
Many types of instability can be triggered 
when waves interact with topography. 
The two most important are:
1.	 Static (convective) instability results 

from the presence of heavy fluid 
over light fluid, which leads to over-
turning (i.e., a local vertical density 
gradient > 0). Static instability is usu-
ally diagnosed using either the value 
of the local buoyancy frequency N, or 
the ratio of the local fluid velocity U 
to the wave phase speed c. Static insta-
bility can occur when N 2 < 0 or when 

U/c > 1. Physically, these criteria 
imply that the isopycnals are locally 
vertical (that is, opposing gravity; 
(Koudella and Staquet, 2006). 

2.	 Dynamic (shear) instability occurs 
when the destabilizing effect of high-
velocity shear overwhelms the stabi-
lizing effect of density stratification. 
A classic example is the well-known 
Kelvin-Helmholtz billows that occur 
at fluid interfaces such as the oce-
anic thermocline or in atmospheric 
shear layers.

It is mostly conjectured that both 
convective and shear instabilities can 
occur when internal waves break. A non-
dimensional parameter that provides a 
measure of the importance of buoyancy 
forces to inertial forces is the local gradi-
ent Richardson number defined as

Rig =
N 2

(∂U/∂z)2

It has been shown that for steady invis-
cid parallel stably stratified shear flows, 
Rig < 0.25 is a necessary but not suffi-
cient condition for instability to develop 
from small disturbances (Miles, 1961; 
Howard, 1961; Drazin, 1977). There 
are many differing arguments on the 
applicability of the critical Richardson 
number criterion Ric = 0.25 for internal 
waves. Abarbanel et al. (1984) argue that 
a local value of Rig < 1 should suffice to 
identify regions susceptible to dynamic 
instability, while Barad and Fringer 
(2010) argue that Rig < 0.1 is a sufficient 
condition for instability in internal soli-
tary waves. In this study, the traditional 
value of 0.25 is used as a benchmark for 
evaluating the type of instabilities that 
develop as a result of the wave-slope 
interaction process. 

Δρ/ρ0 x 103
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(b) t/T = 6.2

(c) t/T = 6.4
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 2 4 6 8 10 12 14

Figure 3. Snapshots of an 
internal bolus formed from the 
interaction of an internal wave 
with a critical slope for the case 
shown in Figure 2.
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Instabilit y and Breaking 
in the Slope Region
Overturning and wave breaking are 
qualitatively evident in the time sequence 
plots of the density isosurfaces shown in 
Figure 2. As Figure 4 shows, the density 
contours through the middle vertical x-z 
plane indicate significant distortion and 
overturning of isopycnals. The sequence 
depicts wave breaking and formation of 
upslope surging vortex cores of dense 
fluid that are ejected onto the shelf as 
propagating internal boluses as discussed 
earlier. A better perspective emerges 
from the contours of the local gradient 
Richardson number Rig. Figure 5A shows 
contours of 0 ≤ Rig ≤ 0.25, and Figure 5b 
shows Rig ≤ 0. The Rig values close to the 
slope are below the critical threshold of 
0.25 as seen in Figure 5A. These plots 

(a) t/T = 4.8 (b) t/T = 5.1

(c) t/T = 5.3 (d) t/T = 5.7

(e) t/T = 5.9 (f) t/T = 6.2

Figure 4. Density 
contours in the 
slope region at the 
middle vertical x-z 
plane for the case 
shown in Figure 2. 
Time is normal-
ized by the wave 
period T = 19.2 s. 
Contours of den-
sity are plotted 
every 0.2%.

Figure 5. Contours of the local gradient Richardson number for (A) 0 ≤ Rig ≤ 0.25, and (B) Rig ≤ 0, at the middle vertical x-z plane for the case shown in Figure 2. 
Time is normalized by the wave period T = 19.2 s.

(a) t/T = 4.8 (b) t/T = 5.1

(c) t/T = 5.3 (d) t/T = 5.7

(e) t/T = 5.9 (f) t/T = 6.2
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also show that statically unstable regions 
(i.e. regions with Rig ≤ 0 or equivalently 
negative values of N 2) are surrounded 
by regions with small positive values of 
Rig. It is clear from these plots that the 
regions with 0 ≤ Rig ≤ 0.25 are very thin. 
These thin regions surround regions with 
Rig ≤ 0, implying that there is a transition 
from stable to unstable stratification. The 
exceptions to this scenario are the regions 
close to the bottom boundary (e.g., see 
the top left, middle right, and bottom left 
panels of Figure 5A), where regions with 
0 ≤ Rig ≤ 0.25 do not surround a Rig ≤ 0 
region. From this qualitative assessment, 
it can be argued that static instability, 
associated with overturning, is the insta-
bility mechanism above the topography, 
while in the sheared bottom boundary 
layer, dynamic (shear) instability is the 
dominant mechanism. 

Struc ture of Internal 
Boluses Onshelf
The internal boluses that propagate 
onshelf transport dense fluid. A typical 
snapshot of an internal bolus as depicted 
in Figure 6a shows a striking resemblance 
to the head of a gravity current flowing 
over a no-slip lower boundary (e.g., see 
Simpson, 1972; Simpson and Britter, 
1979). The nose of the bolus is raised 
slightly above the bottom wall where the 
flow is at rest due to the no-slip bottom 
boundary condition. Figure 6b shows the 
occurrence of a stagnation point at the 
nose in a reference frame moving with 
the wave. Streamline patterns (not shown 
here) reveal two circulation regions (also 
visible in Figure 6b) within the bolus. 
The first is a more pronounced circula-
tion in the upper part of the bolus where 
circulation speeds have been found to 
be of order the nose propagation speed 
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Figure 6. Velocity vec-
tors superimposed on 
the density contours 
of an internal bolus in 
(a) a stationary refer-
ence frame to highlight 
the amplification of 
onshore velocities at 
bolus locations onshelf, 
and (b) a frame that 
moves to the right at the 
wave speed. Frame (b) 
highlights the circula-
tion regions within the 
core of the bolus. All 

(Venayagamoorthy and Fringer, 2007). 
The second is a smaller reverse circula-
tion region that occurs close to the lower 
boundary and causes dense fluid to drain 
from the bolus. 

Summary
Recent observations reveal the presence 
of nonlinear internal waves in the ocean, 
but there is a great deal of uncertainty 
about their structures, how they are 
generated, and how they propagate and 
dissipate. This detailed study shows how 
internal waves interacting with sloping 
boundaries can lead to the formation of 
internal boluses onshelf. We presented 
results from highly resolved three-
dimensional numerical simulations of 
the interaction of mode-1 internal waves 
with a shelf slope. The focus of this study 
was to obtain improved understanding 
of the interaction dynamics at the slope 
leading to the formation of upslope-
surging vortex cores of dense fluid that 
are eventually ejected onshelf as internal 
boluses. Examination of the local gradi-
ent Richardson number Rig indicates that 
wave breaking may be initiated through 
a combination of enhanced shear in the 
bottom boundary layer and static insta-
bility associated with wave overturning 
above the topography. 
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