

Home

Members

Libraries

Publications

Meetings

Employment

Photochemical control of copper complexation by dissolved organic matte in Rocky Mountain streams, Colorado

Brooks, Marjorie L., Diane M. McKnight, William H. Clements

Limnol. Oceanogr., 52(2), 2007, 766-779 | DOI: 10.4319/lo.2007.52.2.0766

ABSTRACT: We investigated photochemical, seasonal, and source effects on copper (Cu) complexation by dissolved organic matter (DOM). Cu-DOM complexation regulates Cu toxicity by decreasing the activity of the cupric ion ({Cu2-}), the most bioavailable Cu species. However, DO is photochemically unstable under solar insolation. We analyzed Cu-DOM complexation before ar after photooxidation of DOM collected from six rivers during spring runoff and late summer (n = DOM samples). After irradiation of DOM for 24 h in a solar simulator (~4 d of ambient insolation), we analyzed Cu-DOM complexation during potentiometric titrations of Cu into dissolved organic carbon concentrations of 5 mg L⁻¹. In 10 DOM samples across the range of titrations (Cu, 7.8 x 10 to 8.7 x 10% mol L⁻¹), photooxidation of DOM decreased Cu complexation, increasing {Cu²} by an average of 156% ± 28% (mean ± SE). In one DOM sample, irradiation had no net effect on {Cu²·} (6% \pm 12%), whereas in another Cu complexation was enhanced (30% \pm 4%). Cu complexation th was indistinguishable before irradiation decreased significantly more during photooxidation of DOM in spring (185% \pm 25%) than in summer (74% \pm 14%). The specific ultraviolet absorption coefficient at 254 nm explained ~60% of the variation in conditional stability constants of Cu-DOA complexes regardless of DOM source, season, or extent of photooxidation. During a simulated contaminant event where 1.5 x 10% mol L" Cu was added to site waters, water chemistry reduce bioavailability in 6 of 12 cases to below the {Cu2+} expected to cause 50% mortality ({Cu2+}_{ucsa}) in larval fish. However, after 6 d of photooxidation, none of the site waters remained below (Cu²·) LCS0

Article Links

Download Full-text PDF

Return to Table of Contents

Please Note

Articles in L&O appear in PDF format. Open access articles may be freely downloaded by anyone. Other articles are available for download to subscribers only, or may be purchased for \$10 per