

Association for the Sciences of Limnology and Oceanography

Home

Members

Libraries

Publications

Meetings

Employment

Activities

Search

Influence of stream size on ammonium and suspended particulate nitrogen processing

Wollheim, Wilfred M., Bruce J. Peterson, Linda A. Deegan, John E. Hobbie, Beth Hooker, William B. Bowden, Kenneth J. Edwardson, David B. Arscott, Anne E. Hershey, Jacques Finlay

Limnol. Oceanogr., 46(1), 2001, 1-13 | DOI: 10.4319/lo.2001.46.1.0001

ABSTRACT: We used '9NH, tracer additions to determine travel distances of ammonium (NH4) and suspended particulate organic nitrogen (SPON) in six streams ranging from second to fifth order located within a single watershed on the North Slope of Alaska. Based on the distribution of '5N stored in stream bottom compartments (primary producers or grazers), we estimated NH, travel lengths. We used a two-compartment model to estimate the travel length of SPON based on the distribution of source '5N on the stream bottom and SPO '5N in the water column. Both NH, and SPON travel lengths (S_w and S_p, respectively) increased with discharge primarily due to changes in depth and velocity. Variation in the vertical mass transfer coefficient (v,) of both NH, and SPON did occur among the streams but was not related to stream size and was relatively small compared to the change in physical characteristics. Thus, in the Kuparuk watershed, physical gradients outweighed biological or chemical changes as controls on NH, and SPON travel length. The one exception was the Kuparuk fertilized reach, where phosphorus fertilization greatly increased biological activity and NH, processing compared to unaltered streams. Longitudinal gradients in major biological driving variables such as litter inputs, debris dams, and shading are absent in the Arctic, perhaps explaining the relatively uniform NH₂ - v.. Watersheds in other biomes may show differing degrees of physical versus biological/chemical controls. A conceptual model is presented for comparing the relative strength of these controls among different watersheds. Strong relationships between discharge and travel length should greatly aid development of watershed models of nutrient dynamics.

Article Links

Download Full-text PDF

Return to Table of Contents

Please Note

Articles in L&O appear in PDF format. Open access articles may be freely downloaded by anyone. Other articles are available for download to subscribers only, or may be purchased for \$10 per article. All L&O articles are moved into Open Access after three years.

Association for the Sciences of Limnology and Oceanography © 2013