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Canalization is a classic concept in Developmental Biology that is thought to be an important
feature of evolving systems. In a Boolean network it is a form of network robustness in which a
subset of the input signals control the behavior of a node regardless of the remaining input. It
has been shown that Boolean networks can become canalized if they evolve through a frustrated
competition between nodes. This was demonstrated for large networks in which each node had
K = 3 inputs. Those networks evolve to a critical steady-state at the boarder of two phases of
dynamical behavior. Moreover, the evolution of these networks was shown to be associated with
the symmetry of the evolutionary dynamics. We extend these results to the more highly connected
K > 3 cases and show that similar canalized critical steady states emerge with the same associated
dynamical symmetry, but only if the evolutionary dynamics is biased toward homogeneous Boolean
functions.

PACS numbers: 89.75.Fb, 87.23.Kg, 05.65.+b, 89.75.Hc

I. INTRODUCTION

Boolean networks were originally proposed as models
of genetic regulatory networks and are now widely used as
models of self-regulatory behavior in biological, physical,
social, and engineered systems [1–4]. They are designed
to capture essential features of the complex dynamics of
real networks by “coarse-graining” that assumes that dy-
namical state of each node is Boolean, or simply on/off
[5]. For example, in a model of a genetic regulatory sys-
tem each node corresponds to a gene and its Boolean
dynamical state refers to whether or not the gene is cur-
rently being expressed. The regulatory interactions be-
tween nodes are described by a directed graph in which
the Boolean (output) state of each node is determined
by a function of the states of the nodes connected to it
with directed in-links. It has been shown that, despite
their simplicity, Boolean networks capture many of the
important features of the dynamics of real self-regulating
networks, including biological genetic circuits [6–9].

Perhaps the most notable feature of Boolean networks
is that they have two distinct phases of dynamical behav-
ior. These two phases are called “frozen” and “chaotic”,
and in random Boolean networks there is a continuous
phase transition between them[10–12]. The two phases
can be distinguished by how a perturbation in the net-
work spreads with time: in the frozen phase a perturba-
tion decays with time, while in the chaotic phase a per-
turbation grows with time [10, 13]. In networks in which
the states of the nodes are updated synchronously, the
two phases can also be distinguished by the distribution
of network’s attractor periods [3, 14]. When the updates
are synchronous the system always settles onto a dynam-
ical attractor of finite period. In the frozen phase the
distribution of attractor periods is sharply peaked with
a mean that is independent of the number of nodes N .
In the chaotic phase the distribution of attractor periods

is also sharply peaked, but with a mean that grows as
exp(N). In the “critical” state, at the boundary between
the two phases, the distribution of attractor periods is
broad, described by a power-law [14–17].

Many naturally occurring, as well as engineered, self-
regulating network systems develop through some sort
of evolutionary process. Motivated by this fact, a num-
ber of models that evolve the structure and dynamics of
Boolean networks have been studied [17–32]. These evo-
lutionary Boolean network (EBN) models generally seek
to determine the properties of networks that result from
the evolutionary mechanism being considered. For exam-
ple, some studies have explored evolutionary mechanisms
that result in networks that have dynamics that are ro-
bust again various types of perturbations, or that result
in networks that are in a critical state.

One example of an EBN is the model of competing
Boolean nodes first introduced in Ref. [17], and later
studied in Refs. [23, 24, 26]. In this model, the Boolean
functions of the nodes evolve through a frustrated com-
petition for limited resources between nodes that is a
variant of the Minority game [33]. In the original pa-
per on the model, it was shown that the network self-
organizes to a nontrivial critical state with this evolu-
tionary mechanism. Later it was discovered that this
critical state is highly canalized [23]. Canalization [34] is
a type of network robustness, and is a classic idea in de-
velopmental biology. Recently, experiments have demon-
strated its existence in genetic regulatory networks [35–
37]. It occurs when certain expression states of only a
subset of genes that regulate the expression of a particu-
lar gene control the expression of that gene. Canalization
is thought to be an important property of developmen-
tal biological systems because it buffers their evolution,
allowing greater underlying variation of the genome and
its regulatory interactions before some deleterious varia-
tion can be expressed phenotypically [38]. Critical net-
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works are thought to important for gene regulation be-
cause they can store and transfer more information than
either frozen networks, which have a static output, or
chaotic networks, which have a random output [2].
In the previous studies of the EBN with competing

nodes, it was found that, for large networks in which
each node has K = 3 in-links, the system evolves to a
steady state that is both critical and highly canalized.
The canalized nature of the evolved state was found by
measuring the average frequency at which each of the
256 possible Boolean functions of three variables occur.
It was discovered that the functions organize into 14 dif-
ferent classes in which all of the functions in each class
occur with approximately the same frequency. Moreover,
all functions in a class are equally canalizating and the
classes whose functions are more canalizing occur with
higher frequency. It was then found that the existence of
these 14 classes is due to the symmetry properties of the
evolutionary dynamics [39].
In this paper, we extend these results to more highly

connected Boolean networks in which nodes have K > 3
in-links. We show that, although an unbiased implemen-
tation of the same evolutionary process does not lead to a
critical state as it does for K = 3, by biasing the process
in a way that encourages the evolution of more homoge-
neous functions the system can evolve to a critical steady
state. We also show that the possible Boolean functions
again organize into classes that depend on the symmetry
of the evolutionary dynamics and that all functions in
a class occur with the same average frequency. In this
case however, the bias added to the evolutionary process
causes a competition between the preference for canal-
ization and a preference for homogeneity induced by the
bias. This competition between canalization and homo-
geneity is reflected in the frequency at which the Boolean
functions occur.

II. THE MODEL

A. Random Boolean Networks

A Random Boolean Network (RBN) consists of N
nodes, i = 1, ...., N , each of which have a dynamical state
with Boolean value σi = 0 or 1. The Boolean state of
each node is a function of the Boolean valued states of
a set of Ki other randomly choosen nodes that regulate
it. The regulatory interactions of the nodes are, thus,
described by a directed graph. For synchronously updat-
ing Boolean networks, which are the only ones considered
here, the states σi at time t+1 is a function of all states
of its Ki regulatory nodes {i1, i2, ..., iKi

} at time t:

σi(t+ 1) = fi[σi1(t), σi2 (t), ..., σKi
(t)] (1)

The function fi is a Boolean function of Ki inputs that
determines the output of node i for all 2Ki possible sets
of input values. In this particular study, we consider

RBNs in which Ki is fixed for all nodes i. No self-links,
or multiple in-links from the same node are allowed in
our models.
In RBNs, each of the different functions fi is chosen

randomly. We do this by choosing the 2K outputs of each
of the N functions either to be ‘0’ with probability p and
‘1’ with probability 1−p, or to be ‘0’ with probability 1−p
and ‘1’ with probability p. Which of the two cases is used
is chosen with equal probability for each function fi, but
remains fixed while assigning all of the individual outputs
to that particular function. By choosing the Boolean
functions in this way, a symmetry between ‘0’s and ‘1’s
exists on average in the network. Note that the effective
range of p is only from 0.5 to 1.
Note that if p = 1/2, the choice of functions is unbiased

and each of the 22
K

functions are equally likely to be
chosen. For p 6= 1/2 the choice of functions is biased
toward homogeneity. The homogeneity of a function fi
is defined as the probability that it will output a “0”,
or the probability that it will receive a “1”, whichever
is larger, assuming that it receives random input. The
average homogeneity of the network, P , is the average
homogeneity over the functions of all nodes i.
The system state Σ of the network at time t is given

by the array of Boolean values of the states of each node:

Σ(t) = {σ1(t), ..., σN (t)} (2)

Because the dynamics prescribed in Eq. 1 are determin-
istic, and the space of all possible network states is finite
(of size 2N ), all dynamical trajectories eventually become
periodic. That is, after some possible transient behavior,
each trajectory will repeat itself after some number of
discrete time steps Γ to form a periodic cycle given by:

Σ(t) = Σ(t+ Γ) (3)

The periodic trajectory over this cycle is referred to as
the “attractor” of the dynamics, and the minimum Γ that
satisfies this equation is the “period” of the attractor.
As mentioned above, two distinct phases of dynamical

behavior, “frozen” and “chaotic”, exist for RBNs. For
networks with uniformK > 2, networks are in the chaotic
phase when p is near 0.5 and in the frozen or ”fixed”
phase when p is near 0 or 1. There is a continuous phase
transition between these phases at the so called “edge of
chaos.” The critical value pc where this transition occurs
satisfies the expression [10–12]

1 = 2Kpc(1 − pc) (4)

We will refer to the networks that are critical because
they satisfy Eq. 4 by construction as “non-evolutionary”
networks, since such networks have no evolutionary dy-
namics associated with them.

B. Evolutionary Game of Competing Nodes

The process for evolving the Boolean functions in the
network is:
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1. Start with an RBN constructed with a bias p, and
choose a random initial state Σ(0).

2. Update the state of the network using Eq. 1, and
determine the attractor of the dynamics. (The at-
tractor can be found using the algorithm discussed
in the Appendix of Ref. 25.)

3. For each update on the attractor, determine which
Boolean value is the output state of the majority
of the nodes, and give a point to each node that is
part of the majority.

4. Determine the node with the largest number of
points; that node “loses”. If two, or more, nodes
are tied, pick one at random to be the loser.

5. Replace the function of the losing node with a new
randomly chosen Boolean function with bias p.

6. Return to step 2.

The essential features of the game are (1) frustration
[33, 40], since most nodes lose each time step, (2) negative
reinforcement, since losing behavior is punished, and (3)
extremal dynamics [41], since only the worst performing
nodes Boolean function is changed.
Note that previous studies of this evolutionary model

have always replaced the function of the losing node with
an unbiased, p = 0.5 random Boolean function. Thus,
the evolutionary game we study here differs from previous
work only at step 5.
If the attractor period is longer than some limiting

time, Γmax, then the score is kept only over that limited
time. In our simulations, Γmax = 104 was used. Each
progression through the game is called an “epoch”.
In this evolutionary process only the Boolean functions

evolve; the directed network describing the regulatory in-
teractions between nodes does not change. However, as
we will see, canalization effectively removes interactions
from the network. Thus, as the Boolean functions evolve
and canalization increases the directed network of regu-
latory interactions effectively changes [39]. Thus, effec-
tively, both the structure of the network and the dynam-
ics of the nodes simultaneously evolve, making the model
effectively a co-evolving adaptive network model [20, 42].

III. CANALIZATION AND SYMMETRY

A. Canalization and Ising Hypercubes

As mentioned above, for large networks with K = 3,

it has been found [23, 26] that the 256 = 22
K

possi-
ble Boolean functions of three variables organize into 14
different classes in which the functions belonging to each
class occur with the same frequency in the critical steady-
state that results from the evolutionary game. Moreover,
all the functions in a class are equally canalizing, and,
in the steady state, functions in classes that are more

canalizing occur with higher frequency. Thus, for K = 3
the game causes networks to evolve to a critical steady
state that is highly canalized. Canalization occurs in
Boolean networks when the Boolean functions assigned
to the nodes are canalizing. A Boolean function is canal-
izing if its output is fully determined by a specific value
of one, or more of its inputs, regardless of the value of
the other inputs. The canalization of a function can be
quantified by a set of numbers Pk, k = 0, 1, ...,K − 1,
which are defined as the fraction of the different possible
sets of k input values that are canalizing [2].
Canalization can be further understood by mapping

Boolean functions of K inputs onto configurations, or
“colorings”, of the K-dimensional Ising hypercube [39].
The Ising hypercube is a hypercube which has each vertex
labeled, or colored, either ‘0’ or ‘1’ (“black” or “white”).
In this representation, each of the 2K possible sets of
input values corresponds to coordinates on a given axis
of the hypercube. The color of each vertex represents
the output value of the function for the associated input
values. The mapping of a Boolean function of K inputs
to a configuration of theK-dimensional hypercube is one-
to-one.
This representation of Boolean functions as colorings of

Ising hypercubes facilitates quick recognition of canaliz-
ing functions. For a K-dimensional hypercube, the frac-
tions of canalizing inputs Pk of a Boolean functions are
the fraction of its K − k dimensional hypersurfaces that
are homogeneously colored.

B. Symmetry of Evolutionary Dynamics

This Ising hypercube representation is particularly
helpful for understanding the role of symmetry in the evo-
lutionary dynamics. The fourteen (14) different classes
that were observed empirically in the original K = 3
study were later recognized as being those Ising hyper-
cube colorings that are related by cubic symmetry plus
parity [39]. Parity in this case refers to simultaneously in-
verting the Boolean values associated with each vertices.
An underlying symmetry of the evolutionary dynamics
was therefore reflected in this symmetry of the evolved
steady-state. Furthermore, this symmetry preserves the
canalization values Pk of functions in each class, since
neither cubic nor parity operations change the percent-
age of homogeneously colored hypersurfaces.
In mathematical terms the different classes correspond

to the group orbits of the “Zyklenzeiger” group, which is
the hyper-octahedral symmetry groupOn (where n = K)
combined with parity [39]. A group orbit is the set of con-
figurations that map into each other through applications
of a group’s symmetry operations. The number of orbits
PG can be calculated analytically using Pólya’s theorem
[43]:

PG =
1

|G|

∑

g∈G

|Xg| (5)
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where G is the symmetry group acting on the K-
dimensional Ising hypercube, |G| is the number of op-
erators g ∈ G, X is the set of hypercube colorings, Xg is
the set of colorings that are left invariant by g, and |Xg|
is the size of set Xg.

To apply this theorem, one must construct all the op-
erators of the group, sum the number of functions left
invariant by each operator, and divide by the total num-
ber of symmetry operators. The hyper-octahedral group
On has n!2n operations. Including parity operations dou-
bles this number.

A given symmetry operator g can be written as a per-
mutation of the vertex numbers on a given hypercube.
As a result, each operator g can be expressed in terms
of its cycle structure xb1

1 xb2
2 ...xbm

m , where
∑m

i=0 ibi = 2K .
This notation indicates that g contains b1 cycles of length
1, b2 cycles of length 2, etc. The complete cycle repre-
sentation of the hype-octahedral group for an arbitray
dimension K is given by a known recursion relation [44].
For K = 3 the complete cycle relation is:

x8
1 + 13x4

2 + 8x2
1x

2
3 + 8x2x6 + 6x4

1x
2
2 + 12x2

4 (6)

where the coefficients of this polynomial indicate the
number operators with a particular cycle structure.

Without parity, the number of functions left invariant
is equal to 2Nc , where Nc =

∑m

i=1 bi is the total num-
ber of cycles in the operator. Parity must be treated
separately; no functions are left invariant by the parity
operator with any hyper-octahedral operator containing
at least one cycle of length 1. Thus there are 2Np func-
tions left invariant for the operators which include parity,
where Np = (1 − Θ(b1))

∑m

i=1 bi and Θ is the Heaviside
step function.

Thus, applying Pólya’s theorem to the K = 3 case, we
arrive at

PG = (1/96)((2)8 + 13(2)4 + 13(2)4 + 8(2)4 +

8(2)2 + 8(2)2 + 6(2)6 + 12(2)2 + 12(2)2) = 14 (7)

This is precisely how many function classes were found
empirically in the K = 3 case [23, 39]. Similarly, the
complete cycle representation for the K = 4 is

x16
1 + 12x8

1x
4
2 + 51x8

2 + 12x4
1x

6
2 + 32x4

1x
4
3 +

48x2
1x2x

3
4 + 84x4

4 + 96x2
2x

2
6 + 48x2

8 (8)

Using this result, accounting for parity, and apply-
ing Pólya’s theorem we calculate PG = 222 for a 4-
dimensional hypercube under rotation plus parity sym-
metry. (Note that an erroneous value of PG = 238 was re-
ported in Ref. [39].) This is how many classes of functions
should be observed in a critical steady state ofK = 4 net-
works undergoing the evolutionary dynamics. Below we
show that results from numerical simulations are consis-
tent with this prediction. Moreover, the frequencies that
these functions occur show a preference for canalization.

0 5000 10000 15000 20000
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2000
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10000
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FIG. 1: (Color online) A graph of attractor period vs. epochs
for a simulation of a K = 4 network realization with an evo-
lutionary bias of p = 0.65. Notice that neither short periods
nor long periods dominate the behavior after the steady state
is reached at ≈ 104 epochs.

IV. RESULTS

A. Critical States of K=4 Networks with

Competing Nodes

We have performed exhaustive simulations of ensem-
bles of networks with K = 4 playing the game of com-
peting Boolean nodes. All of the simulation results re-
ported in this subsection are for networks with N = 999
nodes. Simulations were run for evolutionary processes
with biases of p = 0.5, p = 0.65, and p = 0.75. The

frequency that each of the 22
K

= 65536 different func-
tions occurred in the evolved steady state was measured
by simulating, for each p, an ensemble of 13,000 indepen-
dent network realizations. Each realization was initial-
ized with an independent random network with random
links and different random functions biased with the as-
sociated p value. The simulation of each realization was
run for 104 epochs to allow the network to reach a steady
state. At the end the simulation of each realization, the
functions of each node were recorded and then used to
calculate the average frequency of each function for the
ensemble of realizations.

Figure 1 shows a graph of the attractor period vs.
epoch for a simulation of a K = 4 network realization
with evolutionary bias p = 0.65. For the first 6834
epochs all the attractors found have periods longer than
Γmax = 104. Then, attractors with shorter periods begin
to appear. After about 104 epochs the network reaches
a steady state with a broad distribution of attractor pe-
riods. As the figure indicates neither chaotic behavior,
exemplified by almost entirely large attractor periods,
nor frozen behavior, exemplified by almost entirely short
periods, dominate the behavior of the steady state. The
steady state is instead at the “edge of chaos” and is a
critical state. All network realizations for p = 0.65 and
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FIG. 2: (Color online) Ensemble averaged frequency of K = 4
Boolean functions in the evolved critical steady state. The
black solid line corresponds to p = 0.65, and the red dotted
line corresponds to p = 0.75. Functions are grouped together
in classes based on hyper-octahedral plus parity symmetry
and with groups then ordered according to canalization from
high to low. The inset shows the same data for functions
1-5000.

p = 0.75 showed similar behavior once reaching a steady
state. However, for p = 0.5, no attractor periods of less
than 10,000 were observed for any network realization.
That is, unlike in the K = 3 case, the system does not
self-organize or evolve into a critical state when removing
functions and exchanging them with unbiased functions.
This indicates that the increased complexity of the more
highly connected network disrupts the networks ability
to self-organize with unbiased functions.
These results indicate that a phase transition occurs in

the evolutionary dynamics as p is increased. At values of
p below the transition value the evolutionary dynamics
do not produce a critical steady state, while at values of
p above the transition, a critical steady state evolves. In
fact, a second transition occurs at higher values of p. At
values of p above this second transition, the evolved state
is no longer critical but instead remains in the frozen
state. Thus, critical steady states evolve only when the
bias of the evolutionary process is within a range.
Note that non-evolutionary K = 4 RBNs are con-

structed with a critical bias of pc ≈ 0.85355, accord-
ing to Eq. 4. This value of pc produces networks with
an average homogeneity of all Boolean function in the
network P ≈ 0.85358. However, the steady state value
of P for networks evolved with a bias of p = 0.65 is
≈ 0.71 Clearly, the critical state of K = 4 evolved net-
works is significantly different than the critical state of
non-evolutionary K = 4 RBNs.
Figure 2 shows the ensemble averaged frequency at

which each of the 22
4

= 65536 different K = 4 Boolean
functions occur in the evolved steady state, for bias pa-
rameters p = 0.65 and p = 0.75. The Boolean functions
were ordered by first grouping them by their membership
to a particular class under hyper-octahedral plus parity
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FIG. 3: (Color online) Enlargement of a small portion of
Fig. 2. The two classes of functions shown have the same ho-
mogeneity but different canalization. Notice that for p = 0.65
(black solid line), the class on the left with higher canalization
occurs with a higher frequency than the class on the right with
lower canalization. However, for p = 0.75 (red dotted line)
both classes occur with approximately the same frequency.
This indicates that the bias towards homogeneity is dominat-
ing the behavior over the drive for canalization at the high
value of bias for these two classes.

symmetry. Then the classes were ordered in descending
order by how canalizing the functions in the class are, as
measured by the sum of theirPk values. As expected, the
graph shows that functions belonging to the same class
occur with the same probability, at least to within the
resolution allowed by statistical fluctuations. This con-
firms the hypothesis that the underlying symmetry of the
evolutionary dynamics is hyper-octahedral plus parity.

Clearly, certain classes of functions occur with a higher
probability than others. In general, functions on the
left side of the graph (higher canalization) occur much
more frequently than functions on the right (lower canal-
ization). However, unlike in the K = 3 case, certain
function classes with higher canalization occur less fre-
quently than function classes with lower canalization.
This occurs because, unlike in the previousK = 3 studies
[17, 23, 24, 26], the evolutionary process here is biased
toward homogeneity. In this case, the drive for canaliza-
tion caused by the evolutionary dynamics is competing
against the bias toward homogeneity for certain classes
of functions. See Fig. 3. Nonetheless, the evolved critical
steady state of these biased networks still shows a pref-
erence for canalization and is strikingly different than a
critical state of a non-evolutionary RBN where homo-
geneity entirely dominates the relative frequency of func-
tions.

Analogous results presumably hold for even larger val-
ues of K. However, because the number of Boolean func-

tions for a given K goes as 22
K

, accurately measuring
the frequency that each function occurs at in the critical
steady state becomes unfeasable for values of K greater
than 4.
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FIG. 4: (Color online) Critical state evolution order parame-
ter Ψ as a function of evolution bias parameter p for networks
of size N = 999 with K = 3 (black straight line), K = 4 (red
dotted line), K = 5 (green dashed line), and K = 8 (blue
dashed-dotted line).

B. Criticality as a function of p and K

Our results for K = 4 indicate that canalized critical
states evolve only when the bias p of the evolutionary
game is within a range. At too low a value of p, the
evolved steady state is a chaotic state and only long at-
tractor periods are found. At too high a value of p, the
evolved steady state is a frozen state and only short at-
tractor periods are found. Only in an intermediate range
of p does a critical steady state evolve. In order to quan-
titatively find the approximate the range of p for which
critical steady states evolve, we define an order parame-
ter Ψ as the percentage of steady state attractor periods
that occur that are less than Γmax. Then, when Ψ = 0
the networks are assumed to be in the chaotic state, when
Ψ = 1 the networks are assumed to be in the frozen state,
and when 0 < Ψ < 1 the networks are assumed to be in
a critical state.

Figure 4 shows a graph of the order parameter Ψ as
a function of the evolution bias parameter p for network
connectivitiesK = 3, 4, 5, and 8. This data was produced
using networks of size N = 999, using an equilibration
time to reach the steady state of 104 epochs, and then
computing Ψ over 3 × 104 epochs. The Ψ values were
also then averaged over 140 network realizations for each
value of p and K. (Sixteen realizations were used for
K = 8). A period cutoff value of Γmax = 104 was used
in these simulations.

For K = 3 the network already evolves to a critical
state at p = 0.5, the smallest possible value of p, and
stops evolving to a critical state at p ≈ 0.82. This is con-
sistent with previous results [17] that unbiased K = 3
networks evolve to critical states. This is not the case,
however, for networks with K > 3. As shown in Fig. 4,
the onset of evolution to criticality for these more highly
connected networks occurs at a value p > 0.5. At least

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1/K

0.5

0.55
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0.8

0.85

0.9

0.95

1

p 
(w
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n 

Ψ
 =

 0
.5

)

FIG. 5: (Color online) p when Ψ = 0.5 as a function of 1/K
for K = 4, 5, 8. The straight (red) line is a linear fit to these
three data points.

for K = 4, 5, and 8, and presumably for all finite values
of K, evolution to a critical state occurs only for a finite
range of p. For example, for K = 4, this range is from
p ≈ 0.60 to p ≈ 0.83. The width of this range appears to
decrease, and both the minimum and median values of p
appear to increase, as K increases. The findings from the
results shown in Fig. 4 vary quantitatively, but remain
qualitatively consistent if 1) the equilibration time is in-
creased, 2) the value of Γmax is varied, or 3) the number
of nodes N nodes is changed.

Figure 5 shows the value of p when Ψ = 0.5, which
approximates the median value of p in the range of the
evolution of a critical state, as a function of 1/K for
K = 4, 5, and 8. Unfortunately, simulating networks
with K ≫ 8 is computationally unfeasable with our
methods, and we are thus restricted to predict the asymp-
totic behavior of these evolutionary random Boolean net-
works using these relatively small values of K. The three
points fall roughly on a straight line. If we extrapolate
the linear fit of the data points, the value of p tends to-
ward a value slightly larger than 1 in the limit of large K.
However, this is physically unrealizable since p cannot be
larger than 1. Therefore, we expect that as K → ∞, the
width of the range of p for which criticality occurs goes
to 0, while the median value of the range goes to 1.

It is important to note that the range of evolution bias
parameter p for which critical state evolves is, at all stud-
ied values ofK, less than the critical bias value pc for non-
evolutionary RBNs given by Eq. 1. Therefore, the critical
steady state that results from evolutionary process is dif-
ferent than the critical state of non-evolutionary RBNs.
From previous studies of K = 3 networks, and from the
results shown in Fig. 2 that were discussed above, the
difference is that the evolved critical steady states are
more canalized.
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V. DISCUSSION

In this paper we have extended previous work on an
EBN model in which the nodes compete in a frustrated
game that causes the Boolean functions of the nodes to
evolve. The previous studies of this model found that
the game causes the system to evolve to a critical steady
state that is highly canalized. Canalized states and their
evolutionary mechanisms are important in Developmen-
tal Biology beause of the usefulness of the robustness
against diliterous phenotypic expression that canaliza-
tion in the genome provides. The previous studies also
found that the evolutionary dynamics of the K = 3
model has the symmetry of the 3-dimensional Zyklen-
zeiger group, which is the combination of parity and the
cubic symmetry group.
The previous studies of this EBN, however, only con-

sidered networks with K = 3 in-links per node. Here we
extended the study the more highly connected networks
with larger K. Real self-regulatory systems, both biolog-
ical and engineered, typically have nodes with a range of
K inputs [3]. Thus, it is important to understand how
larger regulatory connectivity effects evolutionary mech-
anisms.
For networks with K > 3, we find that the game as

previously studied does not cause the network to evolve
to a critical steady state. Instead, it will evolve to a
chaotic steady state. This occurs because the unbiased
game, which was studied previously, replaces the Boolean
function of nodes that lose the game with randomly se-
lected new functions that are choosen unbiasedly from

the set of all possible Boolean functions. Apparently, for
networks with K > 3, unlike what happens for networks
with K = 3, if they are composed largely of nodes with
random Boolean functions with an unbiased distribution,
then the evolutionary game is not “strong enough” to in-
duce a shift in the distribution of the nodes’ Boolean
functions sufficient to have critical state dynamics.

However, we have shown that for networks with K > 3
if the game replaces the Boolean function of the losing
nodes with functions biased toward homogeneity, then a
critical steady state can evolve. We studied the range
of evolutionary bias that will cause critical state evolu-
tion and found that it narrows and that its median in-
creases with K. We have also shown that the critical
steady states that evolve for K > 3 are highly canalized,
although there is also a competing bias toward more ho-
mogeneous Boolean functions. All functions in an orbit
of the K-dimensional Zyklenzeiger group have both equal
canalization and equal homogeneity and occur with equal
frequency in the steady state. Thus, the symmetry of the
evolutionary dynamics of the EBN with K regulatory
links per node is that of the K-dimensional Zyklenzeiger
group.

This study illustrates the importance of symmetry in
self-regulatory networks and of evolutionary processes.
It would be interesting to analyze other self-regulatory
network systems, both real and model systems, with the
methods we have used. This would allow the importance
of symmetry in evolutionary processes to be understood
and become better appreciated.
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