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Amplitude death state for hearing
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We propose amplitude death phenomenon as an underlying mechanism of auditory transduction.
When non-identical auditory hair bundles are elastically coupled, their spontaneous oscillations can
be quenched to form an amplitude death state. We show, in this state, the hair cells are quiet
and ready to detect oscillatory stimulus with coupling-strength dependent amplification. Numerical
demonstration of the mechanism suggests that the non-uniformity of coupled hair cells can contribute
to noise-robust auditory transduction.

One of the surprising aspects of hearing is that the
sound we hear may cause similar or smaller displacement
of hearing organ than we expect from thermal fluctuation
in equilibrium[1]. In ear, hair cells transform mechan-
ical stimuli into neuronal signal with great sensitivity.
Gold[2] has pointed out the ear has high damping due to
the fluid in it and argued that the ear must contain active
amplifier to achieve the high sensitivity and frequency se-
lectivity. The hair cells indeed amplify their inputs rely-
ing on active feedback process[3, 4]. Gold’s regenerative
mechanism for hearing naturally lead to predict emitting
sound of the ear due to the positive feedback oscillations.
The ear indeed emits sound which is known as sponta-
neous otoacoustic emission[5] and individual hair cells
also show spontaneous motion of hair bundles[6, 7]. The
signal amplification might rely on the entrainment of the
external signal to its spontaneous motion as usual radio
engineering. However, direct application of the entrain-
ment mechanism to hearing is problematic, because, if
the hair bundles move spontaneously, the auditory neu-
ron must receive strong noisy signal even in the absence
of the external sound.
The hair cell must be able to amplify weak stimuli and

must be quiet in the absence of sound signal, which is
coined here as quiet amplifier. The hair cells described
by a generic mathematical model[8] and a biophysical
model[9] can be quiet amplifiers. In these models, the
hair cells are assumed to operate at the critical point of
Hopf bifurcation[10], so the active amplification of weak
stimuli is possible without relying on the entrainment
mechanism. In reality, however, there exists noise in the
process of gene expression thus it is more natural to as-
sume a distribution of physical parameters of hair bun-
dles rather than assuming all hair bundles are equivalent
and located at the critical point. Furthermore, the ability
to amplify weak signal is limited by temporal fluctuations
which hides criticality.
In this Letter, we provide a mechanism how the hair

cells can be quiet amplifiers in spite of the noise and
non-uniformity. We will show coupled hair bundles can
enhance amplification and suppress mechanical fluctua-
tions through amplitude death phenomenon which means
quenching of the oscillation due to the coupling of the
oscillator. This intriguing phenomenon was noted in the
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FIG. 1: The approximate phase diagram of two coupled oscil-
lators when (a) µ1 = µ2 = µ > 0 and (b) µ1 = −µ2 = µ > 0.
In the regime of LOCKING, the natural frequencies of the
two oscillators are locked with arbitrary relative phase, while
the oscillation frequencies are different in the INCOHERENT
regime. The amplitude of oscillation is zero in the amplitude
DEATH regime.

19th century by Rayleigh[11], who found that adjacent
organ pipes can suppress each other’s sound. Amplitude
death is universal behavior that appears when any two
or many different oscillators are mutually coupled[12–14].
The phenomenon can help auditory transduction as we
will demonstrate in this work using numerical simulation
of coupled hair bundles. While noisy fluctuations and
unwanted spontaneous oscillation is strongly suppressed,
the oscillators in the amplitude death state react sensi-
tively to weak oscillatory stimulus. In this viewpoint, the
disorder in hair bundles’ size can contribute to hearing.
A simple generic mathematical equations describing

amplitude death is

ż1 = (µ1 + iω1 − |z1|2)z1 + k(z2 − z1)

ż2 = (µ2 + iω2 − |z2|2)z2 + k(z1 − z2), (1)

where z is a complex variable of time, ωi is natural fre-
quency of individual oscillator, and k represents the cou-
pling strength. In the absence of the coupling (k = 0),
the model describes weakly nonlinear system near a su-
percritical Hopf bifurcation [8, 11]. For a single oscillator,
the oscillatory solution zi =

√
µie

iωit becomes stable and
the fixed point z = 0 becomes unstable when µi > 0.
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FIG. 2: The positions of three coupled hair bun-
dles as a function of time. To investigate the effect
of various coupling strength, the coupling constant k(t)
changes as a function of time as shown in the inset (
in units of pN/nm). We choosed (fmax[pN],ksp[pN/nm])=
(337,0.58),(329,0.69),(357,0.58). Offset values for the dis-
placement are added for clearance.

When two oscillators have stable oscillatory solutions
with different frequencies, coupling between the oscilla-
tors can induce instability of the oscillatory motion. For
instance, when µ = µ1 = µ2 > 0, the amplitude death
appears[12] if

|∆ω| > 2µ, and
1

2
(1 + (

∆ω

2µ
)2) >

k

µ
> 1, (2)

where ∆ω = ω1 − ω2 is the frequency mismatch (Fig. 1
(a)). Also if one of the oscillators has stable oscillatory
solution, while the other is at its stable fixed point, the
oscillatory motion can be quenched by the coupling. For
instance, when µ = µ1 = −µ2 > 0 (Fig. 1(b)), the sta-
bility of the fixed point z1 = z2 = 0 is determined by the
sign of real part of the Lyapunov exponent λ satisfying
the eigenvalue equation; ((µ + k + λ)2 + ω2

1)((µ − k −
λ)2+ω2

2)+2k2(µ+k+λ)(µ−k−λ)+2k2ω1ω2+k4 = 0.
The amplitude death regime arises when both of the two
eigenvalues have negative sign. This condition is met
when

|∆ω| > 2µ, and k >
|∆ω|µ

√

|∆ω|2 − 4µ2
. (3)

Note that in any cases the amplitude death requires cer-
tain finite frequency mismatch ∆ω which was not usually
assumed in previous hearing research.

To investigate the response of the amplitude death
state to oscillatory stimulus, let us consider the cou-
pled oscillators subjected to periodic forcing as żi =
(µi + iωi− |zi|2)zi + k(zj − zi) +Feiωt. The external pe-
riodic force Feiωt excites the oscillators in the amplitude
death state, and the oscillation frequencies are locked to

the driving frequency ω. Analytic expression for the os-
cillation amplitude and phase can be obtained when we
consider a special case µ = µ1 = µ2 and the locking
frequency ω matches with the mean oscillator frequency
ω̄ = (ω1 + ω2)/2. Due to the symmetry, we can write
z1(t) = z0 exp(iωt) and z2(t) = z∗0 exp(iωt). The com-
plex amplitude z0 satisfies a simple equation

(µ+ i
∆ω

2
− |z0|2)z0 + k(z∗0 − z0) + F = 0. (4)

The phase difference between the oscillators depends
only on the amplitude of the oscillation and the coupling
strength;

R2 − µ+ 2k =
∆ω

2
cotφ, (5)

where z0 = R exp(iφ). It is interesting to note that there
is intrinsic phase difference between the oscillators even
for very weak stimulus limit.
For weak stimulus, the phase difference is given by

cosφ ≈ −µ+2k√
(−µ+2k)2+(∆ω/2)2

and the amplitude is approx-

imated as a linear response R ≈ F cosφ/(k(1− cos 2φ)−
µ). Nonlinearity becomes significant for R > 1, where
the amplitude R approximately satisfies R3 − µR ≈ F
and the oscillators move in same phase cosφ ≈ 0. In
this case, the 1/3 law appears as in the critical oscilla-
tor model[8]. So, the mechanical response at the average
frequency ω = ω̄ in the amplitude death state is approx-
imated as

R ≈ 1

µ
F

√

(1− 2 k
µ )

2 + (∆ω
2µ )2

1− 2 k
µ + (∆ω

2µ )2
(R < 1) (6)

R ≈ F 1/3 (R > 1). (7)

The oscillation amplitude R is linear in F for weak
stimulus limit in contrast to the essential nonlinearity
of a single oscillator of µ = 0[8]. As can be seen in
Eq.(6) and Eq.(2), the sensitivity defined by R/F can be
enhanced strongly as the coupling strength k increases,
and even diverges at the verge of the amplitude death
regime k = µ

2 (1+(∆ω
2µ )2. Thus, the essential nonlinearity

appears again at this special coupling.
Now we investigate the possibility of the amplitude

death phenomenon in a concrete biological system. For
this purpose, we choose hair bundles of a bullfrog’s hair
cell, which has been concretely modeled in Ref.[7, 9]. Ac-
tive hair-bundle movements results from Ca2+-dependent
activity of the molecular motors which are connected
to transduction ion channels through gate springs. We
assume elastic coupling between hair bundles then the
equations of motion for the position of i-th hair-bundle
Xi and its molecular motor Xa,i are written as

λ
dXi

dt
= Fgs,i − ksp,iXi + k(Xi−1 +Xi+1 − 2Xi)

λa
dXa,i

dt
= −Fgs,i + Fa,i, (i = 1, 2, · · · , N) (8)
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where λ and λa are parameters relating the force and ve-
locity. We used closed boundary conditionX0 = XN+1 =
0, Xa,0 = Xa,N+1 = 0, Fgs,i = −kgs(Xi −Xa,i −DPo,i)
is the force generated by the gating spring, Fa,i =
0.14fmax,i(1−0.65Po,i) is the active force from the molec-

ular motor, and Po,i = 1/(1+exp(
Xi−Xa,i+16.7nm

4.53nm )) is the
open probability of the i-th ion channel[9].

The non-uniformity of the hair bundles has been sim-
ulated by introducing a distribution of the maximal gat-
ing spring force fmax and the bundles’ pivot stiffness ksp.
Fig. 2 shows the positions of three hair bundles which are
coupled with slowly time-varying constant k(t) as shown
in the inset. One can see that the oscillation of three
hair bundles becomes quenched simultaneously. Since
the coupling constant for the quenching depends on de-
gree of mismatch between hair bundles, we can not say in
this work universal value of k for the bifurcation, but the
appearance of the amplitude death is clear. The differ-
ence between the k values for the quenching and revival
of the oscillation indicates that the bifurcation is subcrit-
ical.

We will show the amplitude death mechanism survives
in a more realistic model including effects of inertia,
noise, and large number of hair bundles. Hair bundles
of human’s outer hair cells are coupled through tectorial
membrane which has finite mass and stiffness. To mimic
the inertia of the membrane, we introduce the coordi-
nate of the elastically coupled massive elements Si which
are also coupled to hair bundles (See Fig. 3 (a)). The
governing equations of motions for the N coupled hair
bundles are

mS̈i = −γmṠi + k(Si+1 − 2Si + Si−1) +

N
∑

j=1

fHB,jδi,2j−1,

λẊj = −fHB,j − kgs(Xj −Xa,j −DPo,j)− ksp,jXj (9)

where i = 1, 2, ..., 2N is index for the mass, j = 1, 2, ..., N
is the index for hair bundles, γm is the frictional constant
of the mass. The j-th hair bundles is assumed to be tight
to the 2j-1 th mass, S2j−1 = Xj, and fHB,j is the force
exerted on the mass exerted by j-th hair bundle.

The inclusion of inertia, spatial dimensionality, or de-
tail shape of the coupling is not a important factor to
formation of the amplitude death state. The key to the
death state is the non-uniformity of the hair bundles.
Using Gaussian random number generators, we simulate
random distribution of parameters around fmax = 342
pN and ksp = 0.65 pN/nm with the variance about 50pN
and 0.3 pN/nm, respectively. Fig. 3 shows numerical
results from a particular set of the parameters which
contains 10 self-oscillating hair bundles and 40 static
bundles in the absence of coupling (Fig. 3(b)). As the
coupling strength increases, the mutual coherence of the
bundles’ oscillation is developed. We find that at a cou-
pling strength which is not unreasonable value k ≈ 8
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FIG. 3: (a) Schematic for the elastically coupled hair bundles
with massive membrane. (b) The stroboscopic view (snap
shots at every 10 ms for 1 second.) of 50 uncoupled hair
bundles. (c) The same view of amplitude death state (k = 10
nN/µm). We used m=2 µg.

pN/nm, the oscillation become quenched and a stable
amplitude death state appears (Fig. 3 (c)).
The neural response of the hair cells to stimulus is

not directly proportional to the mechanical displacement
of the hair bundles, so the sum of displacement of all
the bundles does not have direct significant meaning in
auditory transduction. The influx of Ca2+ triggers the
release of the neural transmitter, and also affects the con-
ductance of K+ channel thereby changes the membrane
voltage of the hair cell. Therefore, the open probability
of the transduction ion channel Po is more relevant to
the neural information. Note that multiple of hair cells
are involved in auditory transduction for a single tone.
(The human cochlear has ∼ 3,500 inner hair cells and ∼
11,000 outer hair cells. Inner hair cells are innervated by
auditory nerve.) In this respect, the averaged value of
the open probability

P ∗

o =
1

N

N
∑

j=1

Po(Xj , Xa,j),

is encoded in auditory nerve potential. The sound stim-
ulus is delivered to hair bundles through fluid velocity of
the limp liquid in cochlea and also through movement of
basilar membrane. The effect is modeled by adding ex-
ternal force F (t) to the exerted on the hair bundle. For
the noisy environment, we include also noise force FN(t)
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FIG. 4: (a) The signal force applied on hair bundles as a
function of time in units of pN. The ion-channel open proba-
bility averaged over 50 hair bundles for (b) incoherent (k = 0),
(c) locking (k = 2pN/nm), and (d) amplitude death dominant
state (k = 10 nN/µm) of 50 hair bundles. The noise strength
was chosen DN = 2.8 10−27 N s.

i.e., we add F (t)+FN,j(t), in the right hand side of Eq.(9)
where < FN,j(t)FN,j′(s) >= 2DNδ(t− s)δj,j′ (DN is the
noise strength).
Fig. 4 shows, in the absence of signal ( when F (t) = 0

in Fig. 4 (a)), the hair bundles movement have three
classes. Incoherent regime exists where the averaged open
probability has random fluctuations due to the distribu-
tion of different hair bundles (Fig. 4 (b)). Locking domi-

nant: The incoherent regime evolves to coherent locking
regime where the hair bundles develop mutual coherence
as the coupling increases[15] (Fig. 4 (c)). In this regime,
due to its strong spontaneous oscillation in P ∗

o , it is diffi-
cult to detect when the signal arrives. This problem can
be overcome when the hair bundles are in amplitude death

state (Fig. 4 (d)). In this state, fluctuations are strongly
suppressed because other hair bundles’ spontaneous mo-
tions are quenched. One can see the noisy fluctuation in
the absence of coupling ( Fig. 4 (b)) is suppressed in the
amplitude death regime (Fig. 4 (d)). The sound signal is
amplified and properly encoded in P0 so that it is clearly
visible when the signal is arrived in Fig. 4 (d).
In summary, we have proposed a mechanism for audi-

tory transduction which operates robust non-uniformity
and noise. When coupled non-identical oscillators form
amplitude death state, oscillatory stimulus can be de-
tected with active amplification and precise time-arrival
information. The oscillation amplitude driven by oscil-
latory stimulus is linear, but its sensitivity can be con-
trolled by the coupling strength which can even diverge
at the boundary of the amplitude death regime. Beyond
the linear regime of the stimulus strength F , conventional
nonlinear regime R ∼ F 1/3 appears showing compressive
nonlinearity. We demonstrate the amplitude death mech-

anism through realistic biophysical models for elastically
coupled bullfrog’s hair bundles, which indicates the non-
uniformity of the hair bundles can contribute to auditory
transduction through amplitude death mechanism. The
mechanism proposed here is not sensitive to spatial di-
mension or number of oscillators and it is worth investi-
gating the auditory transduction in non-vertebrates, for
instance, insects of which neuron spikes are coupled to
active antennal motion[16].

Dierkes et.al.[15] have studied coupled hair bundles
where the coupling caused synchronization but didn’t
show amplitude death. It seems that the bundles went
directly from incoherent to locking regime. We think
the reason is probably due to their non-uniformity ( fre-
quency gradient ) was not sufficient to cause the ampli-
tude death (See Fig. 2 (a) and Ref.[14]).
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