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Duysens, J., F. Clarac, and H. Cruse. Load-Regulating Mechanisms in Gait and Posture: Comparative Aspects.
Physiol. Rev. 80: 83–133, 2000.—How is load sensed by receptors, and how is this sensory information used to guide
locomotion? Many insights in this domain have evolved from comparative studies since it has been realized that
basic principles concerning load sensing and regulation can be found in a wide variety of animals, both vertebrate
and invertebrate. Feedback about load is not only derived from specific load receptors but also from other types of
receptors that previously were thought to have other functions. In the central nervous system of many species, a
convergence is found between specific and nonspecific load receptors. Furthermore, feedback from load receptors
onto central circuits involved in the generation of rhythmic locomotor output is commonly found. During the stance
phase, afferent activity from various load detectors can activate the extensor part in such circuits, thereby providing
reinforcing force feedback. At the same time, the flexion is suppressed. The functional role of this arrangement is
that activity in antigravity muscles is promoted while the onset of the next flexion is delayed as long as the limb is
loaded. This type of reinforcing force feedback is present during gait but absent in the immoble resting animal.
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I. INTRODUCTION

A. General Description

Control of posture and locomotion is closely linked
to control of gravitational load. All animals, which have to
deal with this problem, rely on a variety of more or less
specialized receptors. Activation of these receptors is
essential for some human postural reactions (162, 163)
and for the control of the intensity and duration of exten-
sor activity bursts (stance phase) during walking in dif-
ferent groups of animals (97, 260, 471). This is possible
because during movement the input from load receptors
interacts with command signals and rhythm-generating
circuitry. In fact, activation of these receptors can even
determine the choice of the appropriate coordinated pat-
tern.

One spectacular example of the effect of frictional
load has been given by Wendler et al. (530) when studying
the hemipterus Nepa rubra. This insect walks in a classi-
cal alternating tripod coordination (at least 3 legs on the
ground at any time), with alternation of the legs of the
same segment. In this case, the stance phase is normally
longer than the swing phase. When swimming, all legs are
in phase and the swing phase is significantly longer than
the stance phase. It has been possible to design experi-
mental situations in which the frictional load is interme-
diate between the ground and the water condition (walk-
ing on mercury or on a slippery surface). In this latter
case, swing and stance are equal in duration, and both
in-phase and out-of-phase locomotor patterns were used
in alternation. This demonstrates that load, which is im-
portant during stance, is crucial in controlling the interleg
pattern. Similar load-dependent switches in interlimb co-
ordination have been described in the fishing spider Do-

lomedes, which rows on the water surface and walks on
land (19).

There are several reasons why this review is needed.
First, the definition of load receptors should be reevalu-
ated. In mammalian physiology, the question of load re-
ceptors is often reduced to a discussion of a single type of
receptor, namely, the Golgi tendon organ (GTO) of exten-
sors. However, when a limb is loaded during stance, a
wide variety of receptors are activated, including cutane-
ous receptors of the foot, higher threshold force recep-
tors, and spindles from stretched muscles (105, 106, 460).
To what extent, and by what means, are these diverse
sensory inputs combined at the spinal cord level to inform
the animal about load? Should one make a distinction
between receptors involved in the detection of gravita-
tional versus inertial versus frictional load? In arthropod
physiology, a large amount of data are now available on
load receptors and load-compensating reflexes. Previ-
ously most attention has been given to position and move-

ment detectors [such as the hairplates, the muscle recep-
tor organ (MRO), or the chordotonal organs (CO)], but
more recently, there has been an increasing interest in the
cuticular receptors, such as the campaniform sensilla,
which may act as typical load receptors. Moreover, the
role of passive load-compensating mechanisms should be
considered.

Second, a review on the mechanisms of load regula-
tion is timely. In the cat, the discussion of load compen-
sation in leg muscles has long been dominated by the
concept of autogenic inhibition (negative force feedback)
from Ib afferents of GTO from leg extensors. However,
the view on Ib feedback is rapidly changing because
recent experiments have shown that this inhibition is very
short-lasting; therefore, its functional importance is in
doubt (343, 344). On the other hand, support is growing
for alternative ideas based on experiments testing the
function of load feedback under conditions related to
locomotion (412, 416, 534). In particular, the proposal has
been made that, under such conditions, the Ib input from
extensors inhibits flexors and facilitates extensor activity
in the cat (191). The evidence in favor of this proposal has
rapidly accumulated over the last few years (111, 246,
415). Moreover, additional new data are presented to
show that these flexor suppressive effects are due to Ib
rather than Ia input from extensors. On the basis of these
findings, it is concluded that activity from Ib afferents
from extensors reinforces the ongoing extensor activity
during the stance phase and can block the initiation of
swing. Cutaneous afferents from the foot can have a
similar effect. Hence, different types of load receptors can
signal unloading, and this might be essential for the ter-
mination of stance. In addition, other afferent input (pre-
sumably primarily related to limb position) can facilitate
the transition to swing (260). Recently, these findings
have attracted the interest of researchers working with
patients with spinal cord injury, because it has become
possible through intense training to regain some locomo-
tor activity in these patients, and this rhythmic efferent
output can effectively be manipulated by changing the
load level (168, 277, 388). These new training schemes are
based on the knowledge that the above-described load-
compensating reflexes to extensor muscles (111, 191, 246,
415) can be effective not only in spinal cat (274, 277, 364)
but also in spinal human.

As in the cat, it has been found that afferent activity
from load receptors in arthropods feeds into pathways
that were described as substrates for negative and posi-
tive force feedback. These feedback mechanisms play a
crucial role in phase-switching during locomotion. More-
over, both in arthropods and in cats, the direct influence
of this input on the central sites involved in the generation
of locomotor output has been demonstrated by experi-
ments involving rhythm entrainment or resetting (20,
412). The crucial question is how the activity in these
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different load feedback pathways is regulated. Does it
depend on the task (locomotion)? During such a task, is
the modulation of activity a function of the phase of the
movement? To what extent is positive force feedback a
sensible interpretation?

Although some reviews are available that describe
specific load receptors and their reflexes (e.g., Refs. 20,
314, 442, 513), there have been few attempts to incorpo-
rate this knowledge with respect to behavior (283, 436,
457, 534). Moreover, a thorough comparison with human
neurophysiological data is seldom made. In comparison
with other species, bipeds such as humans face the prob-
lem of a reduction in the number of supporting limbs. For
our review, we have considered three animal groups
where load is a crucial control parameter: the arthropods,
which include hexapods, octopods, and even multipods;
the mammalian quadrupeds like the cat or the rat; and the
bipedal human. In the past, the application of a similar
comparative approach has proven to be fruitful in detect-
ing some striking similarities in basic principles used to
handle gravitational load during walking (93, 128, 412,
416, 556). The different load-compensating mechanisms
are then discussed, along with their role in postural reac-
tions and in regulating the phases in walking. The data are
considered within a theoretical framework of feedback
regulation of position, force, and stiffness.

B. System Theory Definitions

At the onset, it is necessary to define load and force.
Force is the mechanical interaction between an object
(body) and its surroundings. Its SI unit of measurement is
the Newton (N). A force is applied to a mechanical struc-
ture by a mass independent of velocity and acceleration
(e.g., weight, gravitational load), by an accelerated inert
mass (inertial load), or by frictional forces (frictional
load). This force changes the form of the mechanical
stucture. It imposes stress (i.e., force applied per unit
area) on the mechanical structure which may then expe-
rience strain (the change in length ratio to the initial
length, expressed as a percentage). Sense organs are sen-
sitive to such changes, and their inputs to the central
nervous system (CNS) provide information about the
force applied, be it via a gravitational, inertial, or fric-
tional load. Therefore, load is always measured as a
change in position in one way or another.

Another point that sometimes leads to misunder-
standing is the definition of positive and negative feed-
back. For example, a classical closed-loop controller
works with negative feedback, i.e., the actual value xact to
be controlled is measured by sensory systems, and this
value is then compared with the desired value to deter-
mine the error signal (Fig. 1A).

This comparison is done by subtracting the actual

sensed value xsens from the desired value xref. For this
subtraction, the sign of the sensed value has to be in-
verted, giving rise to a description in terms of negative
feedback. Depending on the sign of the deviation, such a
feedback control system can, however, provide actions
with different, i.e., positive or negative sign, depending on
the sign of the error signal xerr. The overall gain G of the
feedback system is C/(1 2 C 3 S), where C is the gain of
the forward part of the loop (controller plus actuator, Fig.
1A) and S is the gain of the recurrent part (sensor, feed-
back transducer). As long as the disturbance is zero, the
reference value determines the actual value according to
xact 5 G 3 xref. If the desired value of such a closed-loop
controller is fixed, this system provides the basis for the
so-called resisting reflexes. As an example, take a simple

FIG. 1. A: scheme showing a negative-feedback controller. Xref,
reference input, desired value; Xerr, error signal; Xsens, actual value as
measured by sense organ. B: 2-joint arm tip of which should be moved
along x-axis on horizontal surface. C: 2 negative-feedback systems con-
trolling position (pos; I) or force (f; II). For explanations, see text.
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joint moved by two antagonistic muscles, a levator and a
depressor muscle. Assume that the joint is in a resting
position such that both muscle forces (plus gravity) bal-
ance each other. If by an external disturbance the limb is
lifted, for example, the depressor muscle will be activated
to resist this disturbance. Such a system could also be
used as a servocontroller, i.e., a feedback controller, the
set point (reference input, desired value) of which is not
fixed but can be changed by higher centers. The servo-
controller might, for example, be used to activate the
depressor to move the limb downward. If the limb is
loaded such that it does move only slowly or not at all, the
error signal increases as the set point is moved to values
corresponding to more lower positions. This increases the
strength of the motor output, and therefore, the load of
the leg is further increased. This observation might lead to
the interpretation of an “assisting” reflex or positive feed-
back, because increase of load leads to higher muscle
activation that further increases the load. However, this
assisting effect is based on a system with negative feed-
back.

1. Control of compliant motion

In addition to position, or its higher derivatives ve-
locity or acceleration, the controlled variable might, for
example, be force. To simplify the discussion, the nature
of force versus position control requires consideration.
When a leg or an arm has to be moved through free space,
the movement of the hand or the leg tip need not neces-
sarily be specified in fine detail. Therefore, different con-
trol principles like velocity control, or soft or rigid posi-
tion control, are applicable. The situation is different
when the arm or the leg has to be moved under some
mechanical constraints. Assume, as an example, that the
tip of a two-joint arm should be moved along a horizontal
line while gliding on a horizontal surface (Fig. 1B). As-
sume that the tip of the arm is controlled by means of a
rigid position controller, for example, an “integral” con-
troller (i.e., controller C in Fig. 1A, having the property of
an integrator; see also Ref. 130). Then a small deviation of
the horizontal line, be this caused by an uneven surface or
only by inexact sensor data, would cause the tip to either
lose contact with the surface or the controller would
produce maximum force to push the tip hard against the
surface to reach the ideal horizontal line (assuming the
above-mentioned I-controller or a position P-controller of
high gain). To avoid these problems, a control system
permitting compliant motion is required. Compliant mo-
tion means that the movement trajectory is modified by
contact forces or tactile stimuli occurring during the mo-
tion.

Compliant motion can be obtained in two ways that
are called passive and active compliance. For passive
compliance, elastic elements are used which in biological

systems are in the form of elastic muscles. Tendons and
skeletal structures may also contribute to passive elastic-
ity of the limb. Using an elastic element, the problems
mentioned above could be solved. However, the force
cannot be controlled properly. It rather depends on the
size of the disturbance. In active compliant systems, the
degree of compliance can be adjusted according to vari-
able requirements. Two different principles will be dis-
cussed, namely, “soft” position control (using a propor-
tional controller) and force control. Both will be
explained using a single joint system. Figure 1C shows a
limb that can be moved by two muscles, here symbolized
by two springs (with adjustable stiffnesses). A position
measuring sense organ (I) is attached to the joint to
measure the actual position of the limb. This value is
compared with a reference value, the desired position
posref, by means of a subtraction (negative feedback). The
resulting error signal poserr is given to the controller,
which in this case represents a proportional element (P
controller). The output of this controller determines the
activation of the two muscles. A disturbance, for example,
an external weight attached to the limb, moves the limb
downward, thereby increasing the error signal. This in
turn increases the activation of the muscles, in this case
the upper “levator” muscle to compensate for this distur-
bance effect. Because the controller is a proportional
element, the compensation is not complete, but propor-
tional to the size of the disturbance. Therefore, the whole
feedback system acts like an elastic element, whose stiff-
ness can, however, be adjusted by changing the gain of
the feedback loop (this form of active compliance is
sometimes called impedance control, Ref. 47). This sys-
tem represents a negative-feedback system controller for
the position of the joint. In arthropods, joint position may
be measured by hair plates or chordotonal organs, for
example. Correspondingly, muscle spindles or joint re-
ceptors could alternatively be used to measure joint po-
sition in vertebrates.

Figure 1C, top, shows another control system,
namely, a force feedback controller. A small elastic ele-
ment (II) is attached to the end of the arm. This is bent
when the limb is loaded by, for example, a weight as
symbolized by the arrow “dis” in Figure 1C. This element
can be interpreted as a sensor of the force or the load. In
arthropods this could be realized by campaniform sensil-
lae, cuticular stress detectors, or other organs. In verte-
brates, Golgi organs are the main sensors. This sensor
signal can be compared with a value representing the
desired force fref to determine the error signal ferr. Via a
controller, this signal influences the muscles. When in this
case the same disturbance force (limb pushed downward;
see arrow “dis”) is provided as has been considered in the
case of the position controller, the levator muscle activa-
tion now decreases to move the limb downward, i.e.,
away from the disturbance input, because this controller
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tries to maintain a constant force value as measured by
the sensor. Therefore, although we again have a negative-
feedback system, in this case of force feedback, the reac-
tion to the same disturbance input has a different sign.

Therefore, if one is not aware of the modality of the
relevant sense organs, one may interpret this effect as to
result from a positive position feedback. An ideal position
sensor is compliant (Fig. 1C, I), whereas an ideal force
sensor is stiff (Fig. 1C, II). Correspondingly, an ideal
position tranducer is in series, an ideal force transducer in
parallel with the moving element. However, there are also
somewhat compliant systems like impedance-controlled
muscles, whose muscle spindles could be used to trans-
mit information about force. Therefore, the distinction is
not always immediately clear.

At first sight, one might assume that a given joint
could not at the same time be under force and position
control because, as in the example explained here, both
controllers act in opposite directions. However, both con-
trollers may cooperate sensibly. When, for example, the
force controller of the levator-depressor system shown in
Fig. 1C is used to carry a given weight (represented by the
arrow “dis” in Fig. 1C) against gravity and therefore de-
velops an upward directed (levator) force, and, at the
same time, the position controller is used to lift the limb
upward, then both controllers cooperate to excite the
levator muscle.

There are of course also true positive-feedback sys-
tems, but these can show different behavior. Let us con-
sider a position controller. In the case of negative feed-
back, the movement stops when the desired value, or set
point, is reached. In the case of positive feedback, the
overall gain is C/(1 2 C 3 S). For C 3 S , 1, the system
behaves in principle like a negative-feedback system but
has a higher overall gain for given values of C and S. For
C 3 S $1, the system is instable, i.e., the movement
continues infinitely and possibly with increasing velocity
and stops only if an external reason is provided or a
saturation level is reached. (Correspondingly, in the case
of positive force feedback, the force should continuously
increase.) A critical test for positive feedback is to exper-
imentally change the direction of the movement of the
actuator output by application of a disturbance, in our
example by moving the leg. For positive displacement
feedback, the actuator should now augment this new
movement, whereas for negative feedback it should con-
tinue to follow the old direction (e.g., Ref. 467).

The theoretical basis of positive feedback has not
been studied in great detail because positive-feedback
systems are generally considered to show problems con-
cerning stability. However, very recently it was shown
that proportional systems with positive feedback cannot
only be stable but can show interesting properties (for
positive force feedback, see Refs. 437, 438; for positive
displacement feedback, see Refs. 133, 467). Particularly

elegant solutions that can explain puzzling experimental
results are provided by concomitant positive force feed-
back and negative displacement feedback (Refs. 437, 438;
see sect. VII). Application of a positive displacement feed-
back with a loop gain of ;1 (C 3 S $1) can be used to
solve several problems occurring when mechanically cou-
pled joints have to be coordinated. This is possible when
the instability is “tamed” by the introduction of a high-
pass filter into the loop (133, 467).

2. Resistance and assistance

The importance of this point on terminology can be
judged by inspection of the current literature on Ia and Ib
effects in the mammalian system. As will be described
further in section VIB, it is often argued that Ia afferents
cause reflex effects consistent with negative feedback
and Ib afferents provide effects in line with positive feed-
back, at least during the stance phase of gait. It is impor-
tant to realize that in fact, both types of feedback can
assist each other during the stance phase, since they both
only provide basically for facilitation of extensor activity
assuming the extensors actively lengthen. Hence, they
both can be seen as assisting reflexes from the point of
view of extensor contractions and load compensation,
because the sign of the action depends on the sign of the
error signal. In this way, particularly elegant solutions
that can explain puzzling experimental results are pro-
vided by concomitant positive force feedback and nega-
tive displacement feedback (437, 438; see sect. VII).

3. Open-loop control

Another possible misunderstanding refers to the
term open-loop control. This is meant to describe a system
that does not rely on feedback signals, for example, a
targeting movement with dorsal roots cut, and is some-
times also called feed-forward control. In reality, how-
ever, this control signal is usually influenced by sensory
signals, for example, visual input, which provides feed-
back of target position. Therefore, a so-called feed-for-
ward control might, on a higher level and maybe on a
different time scale, also correspond to a feedback con-
troller (136).

4. Hybrid control

The above-mentioned problem of control of compli-
ant motion could be solved by a force controller or by a
soft position controller, or in some cases as mentioned, by
a combination of both. A problem not addressed up to
now is that, in a realistic situation, the movements of
several joints have to be controlled. Thus the system has
several degrees of freedom. The control task might then
be complicated in such a way that the task differs for the
different degrees of freedom. For example, the task de-
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scribed in Figure 1B has two degrees of freedom: one
along the y-axis and the other along the x-axis. This task
requires a compliant control in the direction of the verti-
cal (y) axis as mentioned above. However, along the
horizontal axis, a rigid position control might be advan-
tageous because a rigid position control helps to minimize
errors. How can both goals be achieved? The classical
engineer’s solution to this problem is the so-called hybrid
control; movement in the horizontal direction is under
position control, whereas movement in the vertical direc-
tion is under force control. In the case of a leg in stance,
we have just the opposite situation. Movement in the
vertical direction (control of body height) is under posi-
tion control, but for movement along a horizontal axis, the
leg might be under force control (133). It is, however, not
always possible to attribute these two tasks to separate
joints. Usually all joints can contribute to both tasks
making a hybrid controller a possible, but complicated
system (47).

II. LOCOMOTOR BEHAVIOR AND LOAD

Walking is a repetition of successive steps. Each step
is composed of two phases. In forward walking during the
swing phase, the leg is lifted from the ground and is
moved by its muscles against its inertial load. At the end
of this phase, the leg reaches an anterior extreme position
(AEP). During the stance phase, the leg is on the ground
supporting the gravitational load of the body and propel-
ling the animal, i.e., acting against inertial and frictional
load. At the end of this phase, the leg reaches the poste-
rior extreme position (PEP). In invertebrates, but also in
vertebrates which use other modes of locomotion with a
specific locomotor apparatus (like a paddle for swimming
or a wing for flight), the two phases are also present and
often named power stroke for the corresponding stance
phase and return stroke for the corresponding swing
phase. The movement during the stance phase has often
been compared with a slow ramp, whereas the movement
during the swing phase to a ballistic action (152). Because
body weight depends on the surrounding medium, the
importance of load is very different in these various motor
activities. Gravitational load is especially crucial in ter-
restrial walking, whereas it is relatively less important
during locomotion under water, where frictional load is
an important element.

A. Invertebrates

The role of load is particularly well illustrated in
animals that locomote in various media. For example,
amphibious animals can move equally well in and out of
water. The crab, Carcinus maenas, walks laterally most
of the time with four pairs of legs. The legs in the direc-

tion of walking are the leading legs; those pushing the
body behind the cephalothorax are considered trailing
legs. In seawater, the crab’s weight is about seven times
less than on land. In general, the cadence under water is
faster than on land. The basic motor pattern, however, is
somewhat similar in both cases with respect to muscular
synchronization and opposition. A careful study of mo-
toneuronal discharge demonstrates significant differ-
ences in the two media (101). On land, power stroke
muscle discharges lasted longer and involved the activa-
tion of additional motor neurons in muscles that are
innervated by several motor neurons. Under these condi-
tions, maximal discharges occurred at the beginning of
the burst and reached frequencies as high as 200–350 Hz.
Such discharge rates are sufficient to increase signifi-
cantly the muscle contractions needed to support the
animal on the ground.

In walking stick insects, load influences were pro-
duced experimentally in various ways. The direction of
gravity changed by letting the animals locomote under
different conditions (e.g., walking on a horizontal plane or
on a vertical plane and hanging upside down from a
horizontal beam, Ref. 120). The latter situation was re-
cently also studied with cockroaches and the locust (183,
346). The frictional force was changed by letting the
animal walk on mercury (255) or on a slippery oil plate
(138, 213), or applying friction to the treadwheels (227).
Furthermore, the inertia of the wheel was changed (252),
or different external torques were applied to the wheel
(153, 227, 228). Because the mass of the body has to be
carried during stance, load influences are to be expected
to affect leg movement during stance, but tests with loads
applied specifically during the swing show that it, too,
compensates well for experimental changes. Generally,
these load influences affect the position of the AEP and
the PEP as well as the duration of the swing.

For example, in the rock lobster, the removal of load
receptors by autotomy of the legs is assumed to cause the
activity in the remaining stump to switch from an alter-
nating pattern, such as seen during walking, to an activity
profile in phase with the other legs, as is seen in a behav-
ior in which load receptors are minimally activated,
namely, during swimming. The direction of walking can
also be determined by load. The grain weevil, Sitophilus

granarius, which in complete darkness has a circling
behavior on a horizontal surface, is able to go straight
when the animal walks on inclined surface (529). In that
case, it has a preferred direction (downward) due to the
activation of the receptors of the leg which indirectly
measure the direction of gravity. Another example of the
effect of frictional load has already been given in section
I, namely, the change in coordination of Nepa rubra

legs from swimming to walking, dependent on frictional
load (530).

Load afferent input can be decisive in triggering spe-
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cific types of locomotor behavior. In the cockroach it has
been demonstrated that there are some interneurons (IN)
that can induce flight if load-related tarsus information is
absent and walking if it is present (447). Similarly in the
crab, the combined activity of four groups of equilibrium
IN is necessary to ensure bilaterally organized movement,
and the input to these IN determines the type of motor
output. Fraser et al. (231) suggested that these IN can
trigger both swimming and walking. The crab has some
specific load receptors in the dactyl (distal part of the
leg), the stimulation of which induces walking activity. In
the absence of this sensory activity, swimming is the
default motor output (41).

B. Vertebrates

Comparing different motor behavior in the ontogen-
esis of birds, Bekoff (36) has shown that in patterns
where forces are exerted, return stroke and power stroke
durations in the step cycle are very different, while they
differ only slightly when the load is limited.

In mammals, comparable differences can be found
between walking and swimming. Both types of locomo-
tion use similar motor programs, but the relative timing of
the main phases depends on the load. In rat, for example,
the flexion phase of swimming and walking has many
elements in common, including similar electromyogram
(EMG) activation patterns. In contrast, the extension
phase is extremely short in swimming as compared with
walking and followed by an intermediate period of knee
flexion and selective activation of semitendinosus muscle
activity (401). If one assumes that the muscles are driven
to their maximum contraction rate, swing bursts have
similar durations and timing in walking and swimming,
whereas the extensor bursts are totally different (269)
because of the presence or absence of ground reaction
forces.

Iles and Coles (311) have extended these experi-
ments, studying decerebrate rats. Locomotion was in-
duced at controlled step rates by electrical stimulation of
the mesencephalic locomotor region. Animals were run-
ning on a freely moving wheel to which frictional loads
could be added, which caused an increase in the extensor
burst duration. This increase was 10% for semimembra-
nosus and vastus lateralis and 40% for the other exten-
sors. For muscles with double bursts, such as the semi-
tendinosus, the extensor phase activity is prolonged. In
contrast, when gravitational load was reduced by per-
forming similar experiments in a tank of water, the dura-
tion of the extensor bursts was reduced by 35% while
flexor bursts increased by 60%.

Hence, various muscles can react very differently to
loading. Probably the best studied example is the differ-
ence between various muscles belonging to triceps surae.

In the guinea pig, Gardiner et al. (237) found that loading
the animal (through a halter-pulley apparatus) led to a
much more dramatic increase in the EMG activity of
lateral gastrocnemius (LG) than of soleus. Varying speeds
give the same type of results in cats (426), with a higher
contribution of gastrocnemius than soleus under condi-
tions where more force is required. In humans, the same
basic difference between LG and soleus is seen with
changes in speed (199).

In cats, the role of gravity on walking has been stud-
ied extensively using locomotion on inclined surfaces
(292, 426, 503). As expected, the activity in extensor mus-
cles greatly increases during uphill walking. Interestingly,
however, during downhill walking, Smith and Carlson-
Kuhta (503) found that it was the flexors and not the
extensors that dominated the stance phase. In this re-
spect, it is worthwhile mentioning that some animals use
flexors as antigravity muscles. The slow loris is a primate
that uses arboreal locomotion. It climbs in trees and can
progress along the branches either in an upright or in an
inverted position. A combined kinematic and EMG study
(183, 326) demonstrated that the upside down sagittal
pattern is a mirror image of a pronograde upright pattern.
The flexors acted as antigravity muscles when the animal
was in an inverted position. Propulsion was still achieved
through activity in extensor muscles. This is a necessary
consequence of the physical situation and is therefore
more or less also found in climbing insects (120, 183).

Humans can commonly bear loads of up to 70% of
their body mass during walking (297, 369). In the case of
African women of some tribes, the task of load-bearing on
the head has resulted in some remarkable adjustments
(369). These women can carry loads of up to 20% of their
body weight without increasing their rate of energy con-
sumption. For other humans, as well as for horses, dogs,
or rats, a similar increase in load results in an increase of
;20% in rate of energy consumption. When humans bear
loads or walk uphill there is an increase in activation of
extensor muscles (410). Inversely, when weight is re-
duced by body immersion, the EMG and postural reflex
responses are reduced in ankle extensors (166). Similar
gravity dependence is absent for ankle flexors, implying
that proprioceptive input has a more dominant role in
extensors than in flexors. The same conclusion was
reached following a study on split belt gait, in which it
was shown that the amplitude of the ankle extensor ac-
tivity increased with speed despite constancy of step
cycle duration, whereas this was less so for the ankle
dorsiflexors (175). A similar asymmetry is apparent in an
extreme form in the masticatory system, where stretch
reflexes are present in the antigravity closers but not in
openers.

In conclusion, load information is important in regu-
lating different types of motor behavior. To understand
this regulation, it is necessary to consider first how load is
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sensed in animals and humans and how this information
is used to control the behavior. However, effects of load
are not only counteracted by sensorineuronal mecha-
nisms that use skeleton and muscles as mere executing
organs. The physical properties of skeleton, tendons, and
muscles by themselves already play an important role.

III. PASSIVE LOAD COMPENSATION:

BIOMECHANICAL FACTORS NOT

RELATED TO LOAD FEEDBACK

Even in the absence of reflexes, it is possible to resist
changes in load. The stiffness of muscles is partly due to
passive viscoelastic properties and partly to active con-
tractions. Movement against a load (or “constraint”) can
follow either of two strategies. In the feedback strategy,
information about load is used in real time to adapt the
motor command. In the feed-forward strategy, an internal
model of the constraint is used to adjust the compliance
of the limb in anticipation of the contact force. The latter
type of feed-forward control is undoubtedly very impor-
tant, especially for fast movements [see, e.g., control of
movements both of arms (378) and legs (504)], but this is
not the main topic of the present review. In this section
we limit ourselves to the discussion of some biomechani-
cal elements that are important in load compensation in
the absence of load feedback.

A. Invertebrates

Some arthropods can maintain postural positions in
the absence of muscle electrical activity (EMG) (548).
This is due to the combination of passive elastic muscle
tension and of particular biomechanical arrangements of
the fibers. When measuring the length tension character-
istics of muscles in various insects and crustaceans, Wil-
son and Larimer (538), Burns and Usherwood (64), and
Hawkins and Bruner (284) demonstrated that there is a
residual tension when the joints are at their extreme
positions so that muscle develops force without energy
consumption. It has been suggested that this resting ten-
sion could be sufficient to support the weight of the
animals (548).

Another important feature for tonic postural activity
is the catch property, as described by Wilson and Larimer
(538) in the locust (Schistocerca gregaria). The extensor
tibiae muscle is innervated by two excitatory motoneu-
rons (MN), a slow (SETI) and a fast (FETI) extensor
tibiae, respectively. The catch effect can occur when a
high-frequency activation of the SETI axon is superim-
posed on a continuous low-frequency train. The response,
which is only present in some of the fibers, takes the form
of a tension plateau following the burst. This additional
tension is maintained as long as the low-frequency acti-

vation is present. This is thought to be especially useful
for the maintenance of posture and when the animal is
climbing, in which case the SETI is continuously active at
high frequency (64). During fast movements, the FETI MN
are activated along with inhibitory MN that selectively
speed up the relaxation after a contraction of the slow
muscles. This is an elegant method of avoiding the slow-
ing of the fast movement due to the long time constant of
the slow fibers (see also Ref. 539).

Similarly, during crab walking, Ballantyne and Rath-
mayer (16) have shown that the tonic discharge of such an
inhibitory MN (the common inhibitor, CI) plays a role in
reducing the interburst tension of the rhythmically acti-
vated fibers. Bevengut and Clarac (40) confirmed this
result in crab swimming. The frequency of such CI can
increase with increasing activity. This can be due to the
increase in sensory inputs, which are monosynaptically
connected to the CI (85). This adaptive mechanism en-
sures that any increment in burst intensity due to in-
creased load is compensated for by an increase in the
burst relaxation mechanism.

In addition, it has been found that certain neuro-
modulators could play a crucial role in augmenting the
muscular tension. For example, in the abdomen of the
crayfish, 5-hydroxytryptamine (5-HT) increases the ten-
sion of flexors while octopamine has the same effect on
extensors. Both substances, 5-HT and octopamine, act at
two levels. As hormonal substances, distributed in the
hemolymph, they facilitate the muscular contraction,
whereas within the CNS, specific 5-HT or octopaminergic
neuromodulatory neurons are involved in the control of
flexor or extensor motor commands, respectively (336).

B. Vertebrates

By analogy with arthropods, humans and other mam-
mals require relatively little muscular contraction to
achieve weight bearing during standing because of bio-
mechanical factors (arrangements of ligaments and
bones, intrinsic muscle properties such as its force-length
and force-velocity relationships, and intrinsically stabiliz-
ing mechanisms in the musculoskeletal architecture; see
Ref. 547). Small postural disturbances do not always in-
duce active corrective reactions. Instead, these perturba-
tions are compensated through passive viscoelastic prop-
erties of muscles and joints. When muscles are actively
contracting, their stiffness increases, and they are even
better suited to resist load changes. In fact, it has been
argued that, under these circumstances, the muscle prop-
erties are more important for load compensation than
stretch reflexes (257). Furthermore, for humans it has
been shown that muscles can store and release mechan-
ical energy (10), and this property can account for the
high efficiency of muscles during gait (87).

90 DUYSENS, CLARAC, AND CRUSE Volume 80



On the other hand, it is clear that there are limits to
the potential for load compensation by muscle on its own.
For example, Nichols and Houk (398) showed that the
stretch reflex in the decerebrate cat is well-suited to
compensate for nonlinear properties of muscles and can
complement these properties for the regulation of muscle
stiffness. Muscles differ in their ability to resist loads
either phasically or tonically. For vertebrates, as for ar-
thropods, there are specialized slow muscles and/or mus-
cle fibers that are resistant to fatigue (61, 327). There is
some evidence that the MN supplying slow muscles can
be inhibited actively during fast movements, such as dur-
ing paw shaking in the cat (502). During postural tasks
these slow fibers are essential, since they are specialized
for providing high short-range stiffness for immediate
compensation for postural perturbations (in advance of
the reflex stiffness; see Refs. 368, 398).

In the cat triceps surae, motor units of the slow type
produce markedly more force when they are activated by
patterned stimulation of high frequency. The presentation
of only a single interval, which is much shorter than the
others (doublets), is sufficient to elicit this “catch prop-
erty” (61). During locomotion of intact cats, doublets
were found to be quite rare in a variety of muscles (294),
but it is possible that they are used selectively to activate
only slow muscles.

As in invertebrates, a potentially even more impor-
tant mechanism is provided by the voltage dependency of
the synaptic activation of MN. In the cat, Brownstone et
al. (54) have demonstrated a strong “boosting” of the
synaptic excitation from locomotor drive networks as MN
are nearing their firing threshold in immobilized spinal
cats in which rhythmic locomotor neural activity was
induced by injecting L-dopa. The motor output of the
latter type of preparation is commonly referred to as
“fictive locomotion” (267, 325, 422, 550). The Brownstone
et al. (54) results may explain why MN are recruited
directly to high efficient firing rates during real locomo-
tion, although, under different conditions, they have the
potential to fire at lower rates as well (54, 55, 294,
483, 549).

IV. RECEPTORS INVOLVED

IN RECORDING LOAD

What are load detectors? Often the term is used
specifically to indicate receptors that measure muscle
force. However, this definition is too narrow. When a
standing animal receives a sudden unexpected increase in
gravitational load, this load is not only perceived by mus-
cle receptors sensitive to muscle contractions. Cutaneous
receptors of the sole of the foot will be activated as well,
along with all receptors that can sense the reduction in
the joint angle of knee, ankle, or hip resulting from the

extra loading (162). This includes not only joint receptors
but also skin receptors signaling skin stretch and muscle
length receptors (spindle afferents from extensors in the
mammalian system). Hence, it is misleading to focus only
on one type of receptor when discussing load-compensat-
ing reflex pathways. In this review, a distinction is made
between main receptors (true load receptors and body
load receptors) and accessory receptors (neuromuscular
and joint receptors).

As we will see, afferent input from several receptors
that may play a role in the detection of loading of the limb
converge onto common IN. This illustrates that, for the
regulation of load compensatory reflexes, the nervous
system is interested in the ensemble of the afferent input
related to loading rather than in the separate “private
lines.” This does not exclude the possibility that such
precise information could be sent separately to higher
centers for further processing. Hence, the question is not
whether a given sensor is a load receptor or a force,
length, or position receptor, since the same sensor can
serve several of these functions. Nevertheless, all of these
receptors are not equally sensitive to load, and it thus still
makes sense to describe some of these receptors as being
primarily load receptors (true load receptors, Table 1).

One should keep in mind that even a strict force
receptor always measures changes in position because
force can only be detected by its effect on movable,
usually elastic material. Thus the difference between po-
sition and force distorting receptors is a quantitative not
qualitative one. If the compliance of the elastic part is
high, and therefore the movement is small, it is consid-
ered a force sensor, and vice versa. Therefore, in princi-
ple, a position receptor could also carry information con-
cerning force. This is even more the case for those
“position” receptors that also monitor velocity and accel-
eration, as described for the femoral CO of the stick
insect (296). However, information on load changes could
also be obtained when a change in load is not accompa-
nied by a change in position.

A. Invertebrates (Arthropods)

In many arthropod species, changes in motor output
to walking leg muscles are found that are related to the
gravitational load they encounter during stepping and to
dragged weight that impedes forward walking (crayfish,
Refs. 101, 268; cockroach, Ref. 411; stick insect, Refs. 27,
28). In arthropods, load can be monitored in terms of
exoskeletal strain (23, 44). Sensory cells inserted in the
cuticule are real biological strain gauges present in in-
sects, arachnids, and crustaceans. Although they vary in
their morphological details, their design and arrangement
provides for deformation even by small forces (22, 23).
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Moreover, internal proprioceptors can also be stimulated
by load.

1. External specific load receptors

The main receptors in insects are the campaniform
sensilla (CS). They are usually disposed in groups close to
a joint and are composed of a bipolar cell innervating a
small hole within the cuticle with dendritic terminals
terminating in a cap of the exoskeleton. In the cockroach,
the tibial CS have been studied in great detail by Zill and
Moran (552–554). They respond to strain in the cuticle,
resulting from forces due to muscle contraction and load-
ing of the leg by the animal’s weight (434, 435). In the
tibia, there are two groups with different orientations. The
proximal group, oriented perpendicularly to the long axis
of the leg, responds mainly to dorsal bending of the leg
and also to isometric contraction of the tibial flexor. The
distal group, where cap orientation is parallel to the tibial
axis, is activated by ventral bending and cuticular strains
produced by contraction of the extensor muscle. Re-
cently, it could be shown that both groups respond to the
rate of force (446). The proximal group, for example, fires
not only when the tibia is bent dorsally, but also when a
force bending the tibia ventrally is released.

Probably the most important CS are situated at the
coxa and the trochanter. In general, there are five groups
of CS arranged next to the coxa-trochanter joint (cock-
roach, Ref. 435; locust, Ref. 309; stick insect, Refs. 28, 466,
469). Delcomyn (158) and Hofmann and Bässler (295)
found tonic and phasicotonic units, but no pure phasic
units, when recording from the trochanteral CS.

In the crustacean decapod leg, at least two different
structures are involved in recording load (true load recep-
tors, Table 1). The proximal cuticular stress detectors
(CSD) (103) are composed of two elements. The first is
located anterior and dorsal (CSD1) and the second is
ventral (CSD2). They correspond to a soft cuticular re-
gion, innervated internally by a group of bipolar cells in a
structure comparable to a true chordotonal organ.

Klärner and Barth (331) have explained that the CSD2 is
sensitive to deformation of the compliant cuticle. It is an
accurate load receptor when the leg presses against the
ground during standing or during the stance phase of the
step cycle. These sensory cells are sensitive to local pres-
sure of the cuticular soft patch (with either “on” or “off”
responses or both). Most of the afferents give phasico-
tonic on responses.

The activity of on units increases with force, whereas
it decreases with rising forces for the off units. The on
units are also sensitive to low-frequency vibration, with
an optimum around 10–30 Hz (331). The CSD1 has been
studied only recently (370). Some of these sensory units
have similar responses to those of CSD2, with on and off
responses to pressure on the external patch, and they
respond preferentially during the stance phase in walking.
Another group of CSD1 afferents is sensitive to high-
threshold stimulation. They are not likely to be involved
in the routine perception of load, but they may be impor-
tant in inducing autotomy (the loss of the whole limb, see
Ref. 370). There are two advantages for these load recep-
tors in insects and crustaceans to be located proximally in
the leg. One is that neuronal conduction time is shortened
when the sensors are near the base of the leg. The second
is that for mechanical reasons the surface strain of a
cantilever is strongest near its base.

In the crab, there are some very sensitive load detec-
tors situated in the dactyl, which is the most distal seg-
ment (body support receptors; Table 1). These are the
funnel canal organs (FCO) analogous to insect CS (22).

Two types are present with different positions within
the dactyl. The most proximal ones are innervated by two
sensory cells, grouped in one canal. They respond in a
phasicotonic way to imposed load and encode vibrations
at low frequency. One sensory cell is activated by dorsal
stimulation, and the other by ventral stimulation. Hence,
these proximal dactyl FCO receptors are directionally
sensitive. During walking, these two units discharge more
or less simultaneously during the stance phase. Neverthe-

TABLE 1. Types of load receptors

Main Receptors Accessory Receptors

True load receptors Body support receptors Neuromuscular receptors Joint receptors

Mammals Golgi tendon organ Cutaneous receptor on sole
of feet

Muscle spindle Ruffini endings; Pacinian
corpuscles

Arthropods Campaniform sensilla Campaniform sensilla
of walking leg tarsi

Muscle receptor organs Chordotonal organs, hair plates,
hair row

Insects and chelicerates
(spiders, scorpions)

Lyriform organs
(spiders)

Tactile hairs (spiders, insects) Muscle receptor organs
(insects)

Multipolar cells and strand
receptor organs (insects)

Cuticular stress
detectors

Funnel canal organ
of walking leg dactyl

Muscle receptor organ Chordotonal organs

Crustaceans Tendon receptor
organs

Thoracocoxal muscle
receptor and
myochordotonal organ

Multipolar cells
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less, the unit sensitive to dorsal bending always has a
significantly higher discharge at the onset of stance (353,
354). The sensitivity of these units in response to applied
force follows a sigmoid curve with the greatest change in
firing occurring in the range of 25–70 mN (equivalent to
the force produced by a mass of 3 to 8 g). A crab that
weighs 60 g in air weighs only 8 g in water. Because the
animal load is supported by six to eight legs, each leg
exerts on the ground a range of force from around 10 mN
when it is in water to up to 100 mN when it is in air. The
FCO response curve demonstrates that the sensory units
respond over the whole of this range.

The most distal FCO receptors are located at the tip
of the dactyl. They are innervated by only one cell, and
they only respond phasically. They encode vibrations at
much higher frequencies than the proximal receptors
(354). This difference in sensitivity may be related to
topographical differences in the structure of the exoskel-
eton. Distally, the tissue is more flexible than proximally
(lower calcium concentration). During walking, the distal
phasic units are mainly active at the onset of ground
contact. It is worth mentioning that these receptors are
not only sensitive to externally applied load. Both CSD
and FCO respond well to contraction of their surrounding
muscles (levator and depressor for CSD, and opener and
closer muscles for FCO).

In the arachnids, receptors that are comparable to
those mentioned above have been described. For exam-
ple, the lyriform organs and the CS of spiders (484,
485,486) have been described as true load detectors (Ta-
ble 1).

2. Proprioceptors and indirect control of load

Some receptors in arthropods are primarily involved
in the registration of position and movement. Under cer-
tain loading conditions these receptors are activated as
well because of the related changes in joint angles (see
Table 1, accessory receptors). For example, in crusta-
ceans as in insects, chordotonal organs are present at
most leg joints (24, 27, 28, 30, 49, 65, 78, 214). The affer-
ents firing during stance can be implicated in load com-
pensation, since their firing rate is a function of the joint
changes, partly induced by gravitational forces.

In insects, leg joint angles are also measured by
hairplates or hair rows, external sensory hairs which are
bent by the soft joint membrane when the leg joint
changes its position. Such hair plates can monitor the
position of the head relative to the body, and as such, they
can be exploited to provide information concerning the
direction of gravity (e.g., honey bee, Ref. 355; dragon flies,
Ref. 385). Sensory hairs cover the whole surface of the
body and the legs. These can detect local contact and may
also monitor acceleration which, for example, is provided
by loading a leg at the end of the swing movement.

In the femurotibial joint of the insects, different types
of sensory afferents have been characterized, and re-
cently, Matheson and Field (373) have summarized the
complexity of the innervation of that joint in the locust.
The structures involved are the CO, CS, multipolar recep-
tors (28, 109, 516), and muscle tension receptors (for the
subcoxal joint, see Ref. 308). In the crustaceans, similar
structures have been studied in great detail. In the abdo-
men of the crayfish, each segment possesses two pairs of
muscle receptor organs (MRO), located on either side of
the dorsal midline, one phasic and one tonic. The phasic
MRO is associated with rapid movement, and the tonic
MRO provides a reliable signal of either muscle length or
tension. In the legs of crustaceans, other neuromuscular
proprioceptors have been described [e.g., the thoraco-
coxal muscle receptor (TCMRO) (76) or the myochor-
dotonal organ (MCO) (see Ref. 78)]. Similar sense organs
have also been found in insects (50).

All these proprioceptors (MRO, TCMRO, MCO) are
coupled in parallel to independent contractile elements.
Both the proprioceptor and the parallel muscle fibers are
controlled by the same MN. These receptors can serve as
peripheral references for the determination of a stopping
point or set position. When shortening of the muscular
part of the MRO is driven simultaneously with contraction
of a parallel working muscle, the sense organ is not
activated unless a resistive load is encountered during a
movement and stretching of the receptor occurs.

Perhaps the receptors that are the most likely candi-
dates for being true load receptors are the tendon recep-
tor organs (Table 1; true load detectors). They are present
in a fairly large number of crustacean leg segments (78,
281). They are not very sensitive to passive stretch, but
their location is such that increases in muscle tension
transmitted via the apodeme (an invagination of the cuti-
cule on which the muscle fibers are attached) bring about
increases in sensory discharge. The sensory cells are
bipolar and grouped in clusters along the apodeme. If we
compare them with the vertebrates, they differ from the
GTO of the mammals in that they are not intimately
associated with the muscle fibers themselves. They re-
semble more the receptors of the lizard (442), which lie in
the tendon at a distance from the muscle-tendon junction.
In crustaceans, this means that the tendon receptor organ
may be sensitive to whole muscle tension as well as to a
localized tension produced by the contractions of individ-
ual muscle fibers. Sensory cells connected to the muscle
tendons have also been described for insects (28, 373).

Large groups of afferents are thus able to record
load, and we have tried to limit the description to some
major types. We may add, however, that loading of the
whole body can be detected by specialized statocyst or-
gans or gravity receptors that correspond to the otolith
component of the vertebrate nonacoustic labyrinth (42).
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B. Vertebrates

1. Exteroceptors

In mammals, one can distinguish two main load re-
ceptor types, one of which consists of body support re-
ceptors (Table 1). Cutaneous receptors of the sole of the
foot can sense the deformation of the foot and ankle due
to loading. Just after footfall there is a sharp rise of
activity in the nerve supplying the foot pads in intact cats
(193). Recordings from single afferents during the stance
phase in the cat have shown that activity is generated
selectively during stance even from skin areas that are not
directly in contact with the ground (360, 362). Presum-
ably, this is due to skin stretch, which can activate low-
threshold mechanoreceptors. Such stretch-sensitive skin
receptors could thus have a proprioceptive function. This
is not only true for the foot but also for other parts of the
body. For example, in humans, Collins and Prochazka
(110) reported movement illusions evoked by stretches of
the skin of the dorsum of the hand. In the monkey, it was
shown that tactile activity during arm movements, avoid-
ing direct skin contact, reached the primary somatosen-
sory cortex (108).

In humans, the activity from cutaneous afferents dur-
ing movement has been recorded through microneurog-
raphy (59, 206, 305, 332, 366). These studies have con-
firmed that activity from mechanoreceptors can signal
changes in joint angles and thus indirectly also loading.
However, in general, this technique can only be used for
small movements. For walking, a different technique is
needed. To record the afferent activity from the foot
during human walking, an implanted cuff electrode has
been used (498). Activity in the sural nerve, which inner-
vates the lateral side of the ankle and foot, was largest
just after the foot hit the floor, although the innervation
area of the nerve did not touch the ground. Moreover, a
series of small bursts was seen throughout stance, coin-
ciding with fluctuations in heel contact, as measured by
separate sensors.

The role of the skin in load-compensating mecha-
nisms has been most extensively studied in some forms of
fine motor control. For example, due to the elegant work
of Johansson and Westling (321, 322), we now know a
great deal about the role of mechanoreceptors in the
finger tips for precision grip and load detection. During
precision grip, one produces forces that are slightly larger
than the minimum required to hold an object (322). Insuf-
ficient force leads to slip, which is very effectively de-
tected by skin mechanoreceptors. Compensatory reac-
tions to sudden, unpredicted increases in load force occur
with a latency of 40–50 ms in adults and 20 ms in young
children (207), and it is thought that mechanoreceptors
on the fingers are important for such reflexes. In general,
grasp reflexes in infants show all the characteristics of a

force “positive-feedback” system (see also Ref. 438 for
review).

2. Proprioceptors

In mammalian muscles, the main receptors are spin-
dles and GTO. Both are abundant in muscles that com-
pensate for load during gait, and the number of both tends
to covary in a given muscle (236, cited in Ref. 481). These
proprioceptors have been mostly studied with respect to
the reflex actions in the parent muscles, but there are
good indications that this homonymous control is not the
most important function. Scott and Loeb (481), for exam-
ple, have argued that the distribution of spindles among
human muscles seems better related to the need for in-
formation about the position of joints spanned by those
muscles than to the control of the muscles themselves.
Overall, the distribution shows a proximodistal gradient
that is consistent with the observation that humans are
better in judging positions of proximal than of distal joints
(104, 276). For cats, some detailed measurements of the
distribution of spindles have been made for some muscles
(see, e.g., Ref. 444), but unfortunately there is no system-
atic survey available yet. On the other hand, the cat has
been very thoroughly studied with respect to reflex con-
nections (for a recent review, see Ref. 397).

3. GTO

Ever since Sherrington’s work on cats, extensors
have been equated with antigravity muscles in quadru-
peds. Consequently, the Ib afferents from extensors are
usually considered as the most important gravitational
load receptors (Table 1; true load receptors). Golgi ten-
don organs are force-sensitive receptors that respond to
muscle contraction and that have been studied most ex-
tensively as potential detectors of load (for review, see
Ref. 314). They consist of capsules containing collage-
nous fascicles and intertwined sensory endings. Most of
the GTO are not found in the tendon but rather at the
transition from tendons to muscle fibers and aponeurotic
sheaths. In the cat, there are about 10 muscle fibers in
series with a single tendon organ. A contraction of any
one of these 10 fibers is sufficient to elicit a discharge in
the Ib afferent arising from a GTO.

Basically, the GTO acts as a strain gauge measuring
active and passive forces, especially those produced by
the inserting muscle fibers (43, 302, 314, 320, and 514 for
review). In some instances, it was possible to measure the
discharges of all Ib afferent fibers of a single muscle (300).
From this study, it appears that tendon organs are very
good in following variations in force, and it was con-
cluded that they code for dynamic and not for static
muscle force. Initially, it was thought that strong muscle
stretch was the optimum stimulus for Golgi tendon affer-
ents (307). However, in the 1960s, it was discovered that
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small twitches of soleus (320) or tibialis anterior (3) were
very effective in eliciting responses from Ib afferents from
these muscles. The most convincing evidence for the very
high sensitivity to muscle force came from experiments in
which stimulation of ventral roots demonstrated that iso-
lated Ib afferents had a very low threshold (1 mN) for
their responses to muscle contraction (302). Only under
some circumstances the Ib afferents can also effectively
be activated by passive stretch. Stuart et al. (512), for
example, showed that the firing threshold of tendon or-
gans can be about equal for passive stretch and graded
contraction. In most instances, however, passive stretch
was clearly less effective than active contraction (440,
509). To validate the role of GTO in measuring muscle
force in the intact cat or even in human subjects, one can
measure the tendon force directly, using a “buckle” type
of tendon transducer as introduced by Yager (540) and
used by Walmsley et al. (524) and others (for review, see
Ref. 363, 433).

In summary, both in invertebrates and vertebrates
(including humans), load receptors can be divided into
two groups, namely, main receptors and accessory ones
(Table 1). In general, the latter are more sensitive to
movement or position than to the load. However, in some
particular circumstances, the accessory receptors are
sensitive to the load supported. Considering the main
receptors, it is also obvious that they are not only detect-
ing load but also muscle tension. In both groups, it seems
that the main factor for load recording is the particular
location of the receptors in the animal or human. For this
reason, the cutaneous afferents from the sole of the feet
or the cuticular receptors of the insect leg tarsus or of the
crustacean leg dactyl are of primary importance. Al-
though load receptors show many similarities between
invertebrates and vertebrates, some major differences ex-
ist as well. First, in the arthropods, the presence of an
exoskeleton offers some interesting possibilities for re-
cording load by receptors inserted on certain parts of
cuticle. This particular material has itself some specific
load-resisting properties that have been studied in detail
(problem of compliance, see Ref. 23). Second, the ensem-
ble of receptors is much more diverse in invertebrates,
ranging from very simple forms (hairs, setae) to complex
organizations (cuticular structures, tendon organs). In
comparison, in mammals we have mostly rather complex
structures (GTO, skin mechanoreceptors).

V. CONTROL MECHANISMS

IN STATIC CONDITIONS

The aim of this section is to describe direct load
feedback through reflexes under static postural condi-
tions. It is realized that there is also an indirect role of
load feedback, needed to update internal models used in

feedforward control, but this type of feedback mechanism
is beyond the scope of this review (see Ref. 136).

A. Invertebrates

1. Compensatory movements and righting responses

Load exerted on an animal is one major element to be
controlled by equilibrium reactions. The latter can be
divided into compensatory movements, when a constant
position has to be maintained, and righting responses, in
which the appendages actively restore the previous posi-
tion. In crustaceans, such reactions involve the receptors
described previously (cuticular receptors, CO, and the
statocysts). The manner in which visual, gravitational,
and proprioceptive cues interact in the control of com-
pensatory eye movements has been investigated by Neil
(394). Righting reactions are mostly dynamic and involve
the generation of forces to oppose external disturbances.
The ensuing reaction has then to be integrated in the
animal’s usual behavioral posture. For example, in Homa-

rus, the elevation of the claw, unilateral swimmeret beat-
ing, and uropod opening and closing along with move-
ments of antennae are all motor reactions that are aimed
at restoring the upright position (42). Both the statocyst
and some proprioceptors have been shown to be impor-
tant for these reactions. For example, the role of the
coxobasal CO has been demonstrated both for the right-
ing reaction of the antennae (102) and for the control of
swimmeret beating (84).

In normal stance, arthropods maintain a low center
of gravity. As a result, the different leg joints are partially
or totally held in a flexed position while head, thorax, and
abdomen are held in suspension from the proximal leg
joints. Resistance reflexes then ensure the appropriate
maintenance of this posture. This includes equilibrium
reactions and adjustment of body height.

In the hermit crab, the stabilization of the abdomen
has been studied in detail by Chapple (88). A cocontrac-
tion reflex is described that is activated by both stretch
and release of the central superficial muscles in the ab-
domen. The reflex has two components and is very sen-
sitive to ramp stretch. It is primarily sensitive to stretch
velocity. Mechanoreceptors that produce this response
are activated by active force as well as stretch, suggesting
closed loop control.

In general, posture is maintained actively by negative
feedback produced continuously by sensory afferents
controlling the different leg joints in Crustacea as in
Insecta depending on the muscles involved in counteract-
ing the gravitational forces. Skorupski et al. (501) demon-
strated that a particular pool of MN is devoted to negative
feedback, whereas another, more directly connected with
central drive, is involved in positive feedback.

The extensor muscles develop the force required for
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jumping. A special mechanical arrangement within the
femur-tibia joint allows a high force to be developed by
the extensor muscle, although the joint remains flexed as
long as the jump is not yet elicited. During static condi-
tions this flexor force is developed against a cuticular
structure and can easily counteract the extensor contrac-
tion (while inhibition of this flexor force leads to a jump;
see sect. VA2).

Many resistance reflexes are known in arthropods.
These are based on position sensors (30, 69, 92, 217). In
many cases, where whole joints rather than individual
sense organs are stimulated, the participation of load
sensors cannot be excluded. By specific stimulation of the
CS at the cockroach tibia (551, 553, 554), different re-
flexes could be induced: proximal sensillae inhibit flexor
MN and excite extensor MN, distal sensilla induce oppo-
site responses with excitation of the flexor MN and inhi-
bition of the extensor MN. Such reflexes thus provide
negative feedback, since loading the upright standing an-
imal stresses the proximal sensilla, which reflexly excite
extensors. Inversely, lifting the animal produces strain in
the distal sensilla, thereby causing flexor activation.
Therefore, bending of the tibia in either direction is min-
imized. This corresponds to a load compensation system
based on counteracting the bending forces produced by
the animal’s weight on the leg. In the stick insect, Schmitz
(466) confirmed these previous data for a proximal joint
that acts perpendicularly to the femur-tibia joint. He stud-
ied the role of the trochanteral CS in controlling the
retractor and protractor coxal MN. These reflexes also
represent a negative feedback system that continuously
compensates cuticular stress in the legs of the standing
animal. Moreover, he was able to show that these reflexes
are also active in the walking animal. During the stance,
depending on whether the femur is loaded (in posterior
direction) or unloaded, either the retractor coxae or the
protractor coxae is excited reflexively. This would lead to
a prolongation of the ongoing stance or would facilitate
the transition from stance to swing, respectively.

Similarly, in the crayfish, reflexes induced by the CSD
receptors have been studied by intracellular recording of
different MN. Monosynaptic connections have been found
from CSD1 and CSD2 to the different levator and depres-
sor MN, although responses are quite complex and are in
the main polysynaptic (352). It may be concluded that
during stance, these receptors elicit activity that reflexly
induces cocontraction of opposite muscles, which should
result in an overall stiffening of the leg. The outcome of
the reflexes of CSD1 reflexes depends on the force level
(351). Inhibitory responses in the anterior levator were
correlated with the activation of low-threshold CSD1
units, and excitatory responses with the activation of
high-threshold CSD1 units. For the FCO, the final out-
come of the reflexes is totally different. In studies on the
crab, rock lobster, and crayfish, stimulation of the FCO

dactyl nerve resulted in polysynaptic responses in proxi-
mal MN (levator, depressor, promotor, and remotor, Ref.
98). The main response is facilitatory for the levator MN
and inhibitory for the depressor MN, thereby causing a
limb swing movement.

In crabs, the great sensitivity of tendon receptors to
centrally initiated increases in muscle tension suggests
that these receptors are very well situated to evoke com-
pensatory motor discharge that will overcome load en-
countered during leg movements. Stimulation of the
tendon receptor nerve inhibits resistance reflex motoneu-
ronal activity in the homonymous muscle and causes
some inhibition in the opposing muscle (100). However,
depending on the intensity of the stimulation of that
nerve, some authors (408) have found some local facili-
tation, inducing an assisting effect. These receptors then
influence the general control of leg joint position and
movement (367).

A great variety of reflexes have been described in
postural reactions, and all of them involved the load
supported by the animal. They can be summarized as
resistance reflexes that can be understood as represent-
ing negative-feedback controllers. These reflexes counter-
act the effects of external forces applied to the body. The
most important natural case is gravity, which can act in
different directions depending on the position of the
body, e.g., standing on a vertical plane or hanging upside
down from a horizontal beam (stick insect, Ref. 120;
cockroach, Ref. 346).

These resistance reflexes and the sense organs re-
sponsible for them were investigated in detail for the stick
insect (24, 463–465, 527). The whole leg was shown to act
as a height controller, and the different legs act indepen-
dently of each other (standing insect, Refs. 144, 527; walk-
ing insect, Refs. 121, 148). It could be shown that the
reaction of the whole leg represents mostly, but not com-
pletely, the vectorial sum of the resistance reactions of
the individual joints (135). Distributed reflexes that might
be responsible for these differences were described for
crustaceans (92). The resistance reflexes in the individual
joints act together to give the leg a springlike behavior.

In the stick insect, the height controller has a dy-
namic component that adapts to long-term external loads.
This results from the sensitivity of the reflexes to ex-
tremely slow movements, which is also responsible for
the behavior of flexibilitas cerea (32), where a leg after a
disturbance seems to remain in that new position. How-
ever, in effect, the leg moves back to its original position,
but so slowly that is is often very difficult to recognize the
movement by eye. As mentioned in section VIIA, the dy-
namic behavior of the height controllers changes when
the animal changes its state from standing to walking; the
“spring” now shows a tonic behavior with a small time
constant (148, 463).
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2. Other types of reflexes

In spiders, stimulation of tactile hairs on the ventral,
proximal part of the legs induced a contraction in some
leg muscles that raised the body (204). Such a reaction,
which involves coordination of more or less all eight legs,
can be induced by stimulation of just one tactile hair with
a latency to 100–160 ms. These “tactile hairs” appear to be
mechanical touch receptors and are innervated by three
bipolar sensory cells. Local IN could suffice to mediate
local interleg reflexes, whereas plurisegmental IN may
serve to generalize the reaction (380). Several parallel
reports have been presented in insects (424, 492).

Some experiments on postural control before jump-
ing in locusts by Burrows and Pflügers (70) have shown
positive-feedback effects that could be important in in-
creasing force (and load). The tibia of the hindlegs of the
locust is of particular interest because these legs are used
in walking, climbing, and providing propulsive force for
jumping. The tibia is moved by a powerful extensor mus-
cle and by a much weaker flexor muscle. They alternate
during walking but cocontract to generate the high forces
required for kicking and jumping. Such force can be mea-
sured by two CS disposed in the proximal part of the tibia,
one anterior and one posterior; they are excited by strains
set up when the tibiae try to extend against a resistance.
The afferents excite both flexor and extensor muscles:
they excite the fast axon to the extensor (FETI), certain
flexor MN, and some nonspiking IN and then indirectly
the slow axon to the extensor (SETI). This reflex may be
useful during jumping. Before a jump can occur, both
flexor and extensor muscles must cocontract, and it is the
inhibition of the flexor MN that allows the stored force to
be released explosively (286, 287). During the cocontrac-
tion, the CS produce afferent spikes so that they contrib-
ute to the facilitation of both muscles. Campaniform sen-
silla appear to make direct connections with the fast
extensor; however, there is also an inhibitory influence
onto the flexor, and as only the connectivity has been
investigated, the functional contribution is still open.
Femoral chordotonal afferents also synapse monosynap-
tically on such MN and on nonspiking IN, spiking local IN
and intersegmental IN. Inhibition of flexion originates
from the IN, which can be gradually depolarized and
which inhibit the flexor directly (67).

B. Vertebrates

The role of sensory feedback in postural control has
been the subject of several reviews (162, 272, 371, 372).
Here we focus on the issue of load-compensating reflexes.

1. GTO reflexes in the cat

It has been difficult to assess the reflex effects from
Ib afferents because few methods are available to activate

these afferents in isolation reliably. Most of the early
studies (202, 203, 345) used electrical stimulation of
nerves to study the reflex responses in cats. The main
problem, however, is that Ia and Ib fibers have about the
same diameter, and it is usually impossible to selectively
activate the Ib afferents. For a few nerves, such as the
ones innervating knee flexors and extensors, one can
activate Ia afferents before reaching the Ib threshold (46),
and this feature was extensively used to separate Ia from
Ib effects (see Ref. 374 for review).

On the basis of these studies, it was first concluded
that Ib afferent activity induced inhibition in the MN of
homonymous muscles, while providing excitation to an-
tagonist MN (“the inverse myotatic reflex,” Ref. 345). It
soon became clear that this was a misleading term, since
the projections were much more widespread, and there
was no distinct inhibition favoring the parent muscle (202,
203). In fact, the effects were present even in muscles
acting across different joints. Sometimes the effects were
opposite: Ib afferent input from extensors causing inhibi-
tion of flexors (202, 203). The latter type of “exception”
was found quite often when the Ib reflex effects were
studied during facilitations from some descending tracts
(rubrospinal tract, Ref. 298). Furthermore, studies using
spike-triggered averaging showed that Ib effects were
frequently excitatory to synergistic MN (525).

More recently, large changes in gain of Ib reflexes
have been demonstrated by lesioning some of the de-
scending pathways (312, 313). In the latter studies, an
alternative method was used to obtain selective activation
of Ib afferents. This method was proposed by Coppin et
al. (114) and used extensively by Fetz et al. (216). High-
frequency stimulation of the tendon of soleus is a selec-
tive stimulus for Ia afferents, and its prolonged applica-
tion elevates the threshold for Ia activation above that of
Ib afferents for periods ranging from 10 to 25 min. With
this method it was possible to confirm that Ib stimulation
causes autogenic inhibition.

A third method to activate GTO is based on the high
sensitivity of these receptors to induced muscle contrac-
tions. The latter method has been used to study Ib reflex
effects as well. In one of the first studies of this type (106),
the responses of IN in laminae V to VII were recorded
during induced muscle contractions. Most of these units
did not respond to vibration, but many were responsive to
stretch. Surprisingly, it was found that only about one of
every four IN was responsive to electrically induced Ib
input. In contrast, almost all of these units responded well
to light stroking and tendon squeezing of more than one
muscle. It was concluded in line with several other stud-
ies (39, 105, 208, 333, 379, 407) that presumably afferents
with free endings provided the input to these cells. Muscle
spindles may be accidentally activated as well (reviewed
in Refs. 307 and 374). When g-MN are coactivated, the
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firing of spindle afferents may be increased, especially
when tetanic stimuli are used (278, 282, 292, 315).

Given these restrictions, the method of contraction-
induced Ib activations nevertheless yielded some impor-
tant insights. For example, in many schemes based on the
concept of autogenic inhibition, it is tacitly assumed that
the time course of the inhibition parallels the time course
of the contraction eliciting the Ib discharges. A series of
studies from the laboratory of Jami (335, 342–344, 423,
557, 558) has undermined this notion and replaced it by a
much more dynamic view of Ib autogenic inhibition.
Lafleur et al. (343, 344) and Zytnicki and co-workers (557,
558) showed that sustained isometric contractions of gas-
trocnemius medialis elicited short-lasting inhibitions in
homonymous and synergistic MN, whereas Ib afferent
activity persisted throughout the contraction period. The
decline in autogenic inhibition is presumably due to pre-
synaptic inhibition of Ib terminals (342). Furthermore, the
same group recently showed that even in the anesthetized
cat there is evidence for contraction-induced excitation
instead of inhibition in homonymous MN of the peroneal
muscles (335, 423).

The method of contraction-induced Ib activation has
also been successful in the study of the widespread dis-
tribution of the effects over various muscles. For exam-
ple, Lafleur et al. (343, 344) activated gastrocnemius me-
dialis Ib afferents through induced contractions of the
parent muscle and found a rapidly declining inhibition in
a wide variety of both antagonist and agonist MN. Nichols
(397) has argued that force-dependent, inhibitory path-
ways among antigravity and stabilizing muscles link mus-
cles crossing different joints and members of different
synergistic groups that exert torques in different direc-
tions. It follows that each muscle receives a unique com-
bination of reflex inputs. A reduction in degrees of free-
dom of the musculoskeletal system is achieved at high
force levels because the cross-joint coordination resulting
from actions of force-dependent pathways becomes
stronger.

2. Convergence in the Ib pathway

Although the importance of descending input onto Ib
pathways was being revealed, other studies have empha-
sized convergence from other types of afferents. Lund-
berg et al. (365) described convergence of cutaneous and
Ib afferent input onto common IN. Fetz et al. (216) found
that Ia afferent input from ankle and toe extensors could
also cause autogenic inhibition, and they termed this “Ia
nonreciprocal inhibition.” Later, such inhibition was
found to be present in all groups of MN for which auto-
genic inhibition was previously demonstrated following
triceps surae and plantaris stimulation (319). Basically,
the experiments were performed as previously, using
electrical stimulation of nerves to activate Ib afferents,

but in addition muscle stretch, below threshold for Ib
activation, was applied. The pure Ia stretches were as
efficient at causing the “autogenic inhibition” as the elec-
trical Ib stimulus. To emphasize the parallel effects of Ia
and Ib afferents in this pathway, the term Ia-like-Ib inhi-

bition was coined.
Interneurons, receiving mixed Ia-Ib input, are also

activated by cutaneous input (317), as well as by afferents
from joint receptors and by muscle afferents with free
endings (for review, see Ref. 473). As mentioned above,
cutaneous afferents can signal load-related changes dur-
ing movement. It is not surprising then that these affer-
ents have many features in common with Ib afferents. For
example, it has long been known that such afferents have
parallel excitatory and inhibitory pathways to extensor
MN (60). Recently, it was found that, by analogy with
autogenic Ib inhibition, the efficacy of the sural nerve
induced inhibition decreases rapidly when repetitive stim-
ulation is used while the excitation is maintained (285).
Finally, the convergence of cutaneous input on group I
muscle afferent pathways shows some functional special-
ization. Powers and Binder (430) found that presumed Ib
input yielded preferentially excitatory postsynaptic po-
tentials (EPSP) in gastrocnemius MN which also received
excitatory (sural nerve) input. In contrast, Ib inhibitory
effects generally appeared in MN receiving inhibition
from the sural nerve.

3. Autogenic inhibition (inhibition of homonymous

MN) and antagonist excitation

Like autogenic inhibition, the excitation of antago-
nists did prove to be a mixed Ia-Ib rather than a specific
Ib effect (319). Moreover, many IN, which were excited by
such mixed Ia-Ib input, were found to excite rather than
to inhibit antagonist MN (317). Such antagonist excitation
was even clearer when more selective Ib stimulation was
used. Lafleur et al. (343, 344) activated gastrocnemius
medialis Ib afferents through induced contractions of the
parent muscle, and they found a rapidly declining inhibi-
tion in a wide variety of both antagonist and agonist MN.

One of the difficulties arising here is that the notion
of antagonist is often difficult to define. A given muscle,
e.g., the biceps femoris, may be a synergist of another
muscle, e.g., semitendinosus, for one function (in this
case hip extension), but they may be antagonists for
another (exorotation of lower leg). Alternatively, the an-
tagonism may lie in the speed of contraction. For exam-
ple, gastrocnemius and soleus are certainly synergists
with respect to ankle extension, yet these two muscles
are often controlled differentially by the CNS. During fast
scratching movements of the cat, gastrocnemius may be
activated while soleus is being inhibited (502). Skin affer-
ent input (sural nerve) activates fast gastrocnemius units
but may inhibit slow soleus MN (60).
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Nichols (396) found that stretches of gastrocnemius
and soleus combined gave larger stretch responses than
when only soleus was used, at least when the force in
both muscles was low. However, at higher contraction
levels, the combined effect was smaller. This implies that
these muscles act as “synergists” at low force levels and
as “antagonists” at high force levels (where Ib afferent
firing may be expected to be important). Similarly, the
ankle flexors and extensors are linked differently depend-
ing on the contraction level. Nichols and Koffler-Smule-
vitz (399) found that reciprocal excitation from antigrav-
ity extensor muscles onto pretibial flexors parallels
reciprocal inhibition at high force levels only.

4. Functional significance of autogenic inhibition

A coherent proposal for the role of autogenic inhibi-
tion has been provided by Houk (301). He has suggested
that this type of feedback is essential to regulate muscle
stiffness. Earlier work from Nichols and Houk (398) had
shown that the stretch reflex is essential for the control of
muscle stiffness, and Houk proposed that Ib feedback
helps to organize this feedback. However, it is still unclear
how this could be achieved (397). The Ib inhibitory effects
were found to be smaller in decerebrate than in spinal
cats. This led Nichols and Houk (398) to propose that the
increased stiffness in decerebrate rigidity was partly due
to an absence of Ib autogenic inhibition. They hypothe-
sized that in the intact animal, the Ib inhibitory feedback
would balance the Ia-induced reflex stiffness during ec-
centric contractions (lengthening of contracting mus-
cles).

Polymodal convergence improves the flexibility of
reflex control (375) and is meaningful in the context of
load compensation. It is hard to imagine, in daily life, a
loading situation in which only Ib afferents are activated
(see above). Extra loading or unloading is likely to be
detected by a multitude of afferent signals, and the ap-
propriate reflexes presumably require a sufficient amount
of spatial summation of the different channels. This may
include the simultaneous contraction of several muscles,
as Harrison and Riddell (279) have shown that some Ib IN
are not activated by contractions of single muscles but
respond readily to the more synchronous activation of
groups of muscles provided by electrical stimulation.

The general idea emerging is that Ib afferent input,
along with other load-activated afferent input, feeds into
alternative excitatory and inhibitory pathways to a variety
of MN and that the gating of the activity in one pathway or
the other depends on several factors, such as contraction
strength and the context of the motor task in which the
animal is involved and which determines the actual ref-
erence value. To understand the impact of the latter ele-
ment better, it is essential to consider the results from

studies of these pathways in the behaving animal (see
further).

The simple view that autogenic inhibition is the pri-
mary type of force feedback has survived for a surpris-
ingly long time, given the relative weakness of the evi-
dence. It is now well-recognized that there is extensive
convergence both from descending tracts and from dif-
ferent types of afferents onto IN receiving Ib input. The
notion that Ib reflexes inhibit agonists and excite antag-
onists has to be replaced by the idea that Ib input, under
static conditions, can give rise to short-lasting inhibitions
in both agonists and antagonists throughout the limb. The
question now arising is whether this inhibition survives
under dynamic conditions and whether other, facilitatory
pathways then become more prominent. Such a switch
was already predicted in 1970 by Stuart et al. (514), but its
experimental basis had to wait until experiments on be-
having animals could be performed (see sect. VI).

5. Intensity dependency

In the previous section on invertebrates, some exam-
ples were given whereby either assisting or resisting re-
flexes were obtained depending on the stimulus intensity.
Consequently, it may be too simple to relate a given type
of receptor to either assisting or resisting reflexes, since
sometimes both can be obtained depending on the range
of the load applied. In vertebrates, a good example for this
is mastication, where mechanoreceptors around the teeth
can signal load. In humans, the afferent activity can in-
duce either short-latency inhibition or long-latency exci-
tation of jaw-closing muscles such as the masseter (51,
242). Fast loading, as provided by a tap on the teeth,
preferentially induces masseter suppression, while slow
pushes are optimal for masseter facilitation (521). The
fast suppression can protect the teeth and soft tissues in
the mouth in case one bites on an unexpectedly hard
object. The slow facilitation could help to grip the food
bolus between the teeth during chewing. Evidence for
such reinforcing feedback has come from many sources
(51, 406, 520). The general idea emerging is that such
phenomenological so-called positive feedback from peri-
odontal afferents is especially important at relatively low
load levels.

At high tooth loads, the periodontal afferents satu-
rate, and the response reverses to suppression of the MN
of jaw-closing muscles (analogous to the withdrawal re-
flex of the limbs). Thus the switch between resisting and
assisting reflexes might be either due to a negative-feed-
back system under the control of a changing reference
input or, in other cases, to stimulus intensity.

Similarly, during locomotion, both assisting and re-
sisting influences could be useful. When loading is fast
and extreme so that muscles or ligaments could be dam-
aged, feedback should be negative. The clasp-knife reflex,
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which is especially prominent in humans with spasticity,
results in a sudden release of tension in muscles that are
loaded very fast and heavily (resulting in the limb bending
as the blade of a jackknife). It is currently thought that
this reflex is due to activation of group II and III afferents
innervating the muscles through free nerve endings (105).
When load is applied more progressively, such as during
the stance phase, then the need for an assisting effect (or
positive feedback in the phenomenological sense) is more
prominent. Some yielding in early stance makes walking
more elegant and has physiological advantages (pre-
stretch facilitation and ensuing shortening of extensor
muscles, see Ref. 83). On the other hand, the activity of
the antigravity leg muscles should be scaled with the load
provided by the body weight. Cutaneous receptors on the
foot could signal this loading while GTO in extensors are
properly positioned to measure the force exerted by these
muscles. In this respect, it is worthwhile recalling that in
the cat, Nichols (396) found that the reflex actions of
contraction induced reflexes is indeed different at low
and high force levels.

Recently, the effects of induced contractions have
been studied not only in reduced preparations but also in
intact standing cat (431). Pratt (431) found that intramus-
cular stimulation of hindlimb extensor muscles evoked
short latency facilitatory responses (occurring some
21–22 ms after onset of vertical force) that were widely
distributed among hindlimb extensor muscles. For the hip
extensors, for example, the responses appeared exclu-
sively in extensors at hip, knee, and ankle. In contrast, the
hip, knee, and ankle extensors were not activated when
the flexors at any of these joints were stimulated. The
effects on extensor stimulation were taken as evidence
for a Ib extensor reinforcing feedback and interpreted as
positive force feedback.

One other central issue concerns the question of
what exactly is controlled in load-compensating reflexes.
One might think that changes in load primarily lead to
regulation of the center of gravity. However, it was shown
that in the standing cat it is body geometry rather than
center of gravity that is controlled (for review, see Ref.
340). It was argued that one control system regulates limb
length and axis with respect to the vertical (geometry)
and the other regulates horizontal forces and stabil-
ity (341).

6. Proprioceptive reflexes in humans

One major problem in humans is that it is even more
difficult to selectively activate Ib afferents than in ani-
mals. Recently, a method, based on direct electrical stim-
ulation of muscle tendons, was used to demonstrate au-
togenic inhibition in humans (62). However, most work
on Ib reflexes was done using a different method, based
on the relative scarcity of Ia excitatory projections from

gastrocnemius medialis to soleus both in monkeys and
humans (299, 428). Stimulation of the gastrocnemius
nerve below motor threshold does not elicit H reflexes in
soleus but instead produces short-latency suppression of
soleus H reflexes. This short-latency inhibition is sup-
posed to rely primarily on Ib activation, although a con-
tribution of Ia afferents cannot be excluded completely
(428). Reflex effects through activation of cutaneous af-
ferents are very unlikely since separate activation of cu-
taneous afferents does not elicit the same effects.

The method of Pierrot-Deseilligny (stimulation of
motor nerves at 0.95 motor threshold) was extended to
other nerves and other groups of motor neurons (429) and
used extensively to study presumed Ib reflex effects.

As for the cat, it was found that the presumed Ib
autogenic inhibition in humans was very widespread,
even including muscles spanning different joints, and that
there was a considerable amount of convergence with
other afferents and with descending tracts. The inhibitory
pathway between extensors of the ankle (medial gastroc-
nemius) and knee (quadriceps) was inhibited by cutane-
ous input specifically from the sole of the foot (427, 429).
The implication is that during standing, or during the
stance phase, a coactivation of extensors throughout the
limb is possible because Ib inhibitory interactions are
suppressed by afferent input signaling that the limb is
loaded (foot sole). This release of inhibition then could
enable activity in other facilitatory paths to extensors to
become more prominent. These extensor facilitations
could be caused by activation of oligosynaptic Ia affer-
ents, but recent data (215, 511) suggest that it is also
possible that they are due to hitherto undiscovered Ib
facilitatory paths, as was postulated on the basis of cat
experiments (191, see sect. VIB4).

In general, it is difficult to extrapolate data from
reflex studies on static reduced animal preparations to
conditions in which normal subjects are tested during
motor tasks. The comparison with studies on behaving
subjects or animals is therefore essential. For example, it
is quite possible that in humans the Ib autogenic inhibi-
tion is suppressed during posture and locomotion as in
cats. Some indirect evidence in this direction has been
obtained (215, 510, 511).

In humans, postural reflexes such as evoked by
rapid displacement of both feet (393) are heavily influ-
enced by gravitational load, but it is as yet unknown
which receptors are involved. When postural reactions
were tested under water, it was found that there was a
linear relationship between the contact forces (actual
body mass related to load on the subjects) and the
amplitude of compensatory responses in leg muscles
(173). It is thought that extensor load receptors are able
to signal the changes in the projection of the body’s
center of mass with respect to the supporting feet.
Using either rotation or translation stimuli, the same
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group (171, 243) found further evidence for this idea.
Rotation (toe up) induces primarily a reflex response in
the ankle flexors to compensate for the backward sway
of the body. Backward translation evokes a gastrocne-
mius response to compensate for the forward sway.
The scaling of the responses with the degree of trans-
lation was taken as evidence for a role of extensor load
receptors in the regulation of compensatory responses
aimed at the stabilization of posture. Although the fa-
cilitatory paths from load receptors in ankle extensors
may be important for postural support and compensa-
tory reactions, the inhibitory paths could play a role in
voluntary contractions of the antagonists. Yanagawa et
al. (541) found that Ib inhibitory effects from gastroc-
nemius medialis onto soleus were enhanced at the
onset of weak voluntary contractions of the antagonist,
tibialis anterior.

C. Concluding Remarks

In standing arthropods, the detection of loading is
achieved both through extero- and proprioceptors. Some
of the exteroceptors are sensitive to muscle contractions,
and the distinction with proprioceptors is artificial. The
reflexes elicited by activation of the exteroceptors involve
a wide variety of muscles throughout the limb. These
reflexes are aimed either at stiffening the whole limb or,
conversely, at inducing limb flexion or extension. The
proprioceptors belong to two categories (Table 1). To the
first group belong receptors that are primarily involved in
the detection of position and movement (CO, muscle
receptors). It is argued that they can also play a role in
detecting load. A second group of proprioceptors is more
specialized for the latter function (CS). Reflexes from
these proprioceptors can provide either resisting or as-
sisting influences with respect to loading, and they inter-
act with the first group of proprioceptors.

In cats and humans, the registration of the loading of
a limb by gravity is also achieved through several types of
afferents, including those connected to exteroceptors
from the skin. The latter type of afferents can give rise
either to flexion or extension of the whole limb. Among
the proprioceptors, the spindle afferents are well-suited
to detect position and movement, but they could contrib-
ute to load compensation indirectly. Golgi tendon organs
could provide autogenic inhibition under some condi-
tions, but whether such feedback is functionally impor-
tant is in doubt. Indeed, as described in section VI, during
walking, this type of feedback may be suppressed. In-
stead, extensor force feedback suppresses flexor activity.
The pathway for the latter effect is only apparent in the
behaving animal, since it involves motor centers that are
essential for the execution of a given motor task. In the
case of locomotion, the center for the generation of flex-
ion during swing plays a crucial role.

VI. CONTROL MECHANISMS

IN WALKING ANIMALS

During locomotion, it is well known that there is a
continuous interaction between central networks and
sensory afferents (5, 30, 77, 94, 259, 260, 261). The path-
ways used for information about load during standing
may not necessarily be the same as those used during
walking. Moreover, it has been demonstrated that sensory
input is particularly crucial at the transitions between
both phases of the step cycle (27, 97, 122, 126, 127, 138,
140, 149, 228). The potency to interact with central
rhythm-generating centers can be evaluated by investigat-
ing how well a given input is able to reset or entrain the
rhythm produced by a central pattern fenerator (CPG)
(11, 77, 205, 264, 265, 352, 528).

In the arthropods, a central rhythmical activity can
be induced with muscarinic agonists such as oxotremo-
rine or pilocarpine (75, 90, 209, 352, 459, 495). It is obvious
that the rhythmical activity obtained in these conditions is
much slower than the real locomotor rhythm and that the
relationship between the motoneuronal bursts are often
unstable or, alternatively, much more stereotyped than in
free walking. However, some locomotor patterns are
characteristic, and in the crustaceans, forward or back-
ward walking can be well defined. In the crayfish, such
central activity is obtained from thoracic ganglia totally
isolated from the peripheral nerves. If we compare these
activities with those described in the cat, it can be said
that it corresponds to fictive locomotion. These prepara-
tions are interesting in presenting the activity of the lo-
comotor central network without the influence of the
different sensory inputs. In these cases of fictive locomo-
tion, the selective mechanical or electrical activation of a
given load receptor could reveal its role in the organiza-
tion and regulation of these locomotor sequences.

A. Invertebrates

During the stance phase in terrestrial arthropods,
load and antigravity forces are important at the onset of
the stance and become maximum around the middle of
the stance; they decrease steadily until the leg lifts at the
end of stance. However, force measurements show that in
free walking there is a considerable step-to-step variation
even on a flat surface (120).

In insects and crustaceans, position, velocity, and
force seem to be controlled parameters. First we describe
sensory influences acting during stance or swing. Later
we mention influences leading to the transition between
these phases. To characterize the sense organs involved,
several types of experiments have been performed in
which animals are held above a treadmill and a given leg
is held fixed on a separate platform. Both in the stick
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insect and in the rock lobster it was found that if the
platform was held in an anterior position (corresponding
to early stance), the muscles propelling the body pro-
duced higher output than when it was in a more posterior
position (99, 134, 145). Furthermore, for each leg position,
the motor output was higher when the adjacent posterior
leg was in the swing phase than when it was in the stance
phase (145). Under normal conditions, it takes some time
for the force to reach its maximum value in early stance.
When the platform is moved backward by the experi-
menter, the retracting muscles are shortened so that the
force produced by these muscles decreases. If the plat-
form is then suddenly stopped, forces increase for a short
time but then subside in the stick insect (126). In contrast,
in the rock lobster, the forces are maintained depending
on the position of the platform. The increase found during
the stop indicates that velocity is perhaps a controlled
variable as well. For the stick insect, this was verified for
the swing phase (152, 154) and also at the level of MN for
active movements of a fixed animal (526). This assump-
tion is also supported for the lobster by using various
imposed speeds on a treadmill belt. If the velocity of the
leg deviated from a given “desired” value, then the nega-
tive feedback changed the motor output correspondingly.
Cruse et al. (134) found that, at slow imposed speed, the
force exerted on the treadmill was higher than at a fast
speed. The main stance phase muscles (retractor and
depressor) discharge at much higher frequency and with
more motor units at a slow belt speed than at higher
speed. The question arises whether this increased motor
output at slow speed can be considered as an assistance
reflex (positive feedback). Usually the latter terms are
used to indicate that an ongoing movement is reinforced.
However, in this case, the reinforcement is velocity de-
pendent. If velocity is the controlled variable, then the
increased motor output is due to a (negative feedback)
servo-mechanism continuously relating the central com-
mand to the actual movement. A velocity error signal is
then driving the muscle forces directed posteriorly.

Pearson (411), studying walking cockroaches drag-
ging a weight, found that they increase their motor output
to power stroke muscles. It was then supposed that a
positive-feedback signal was elicited by an increasing
load. In the stick insect, Schmitz (466) could show that
experimental stimulation of the anterior trochanteral CS,
which is naturally excited by bending the femur to the
rear, led to an increase of the motor output of the retrac-
tor muscle, whereas stimulation of the posterior trochan-
teral CS decreased the excitation of this muscle in stand-
ing as well as in walking insects. This means that this
reaction opposes too strong a bending of the femur in
either direction. When during walking the leg is pulled by
an external disturbance in the anterior direction, for ex-
ample, the excitation of the protractor muscle is de-
creased. This corresponds to the negative force feedback

scheme depicted in Figure 1C. By adding a weight to be
dragged as in Pearson’s experiment, a force controller
with a fixed set point would decrease the retractor output.
However, increased motor output was found. This could
be obtained by an additional velocity controller that
changes the set point of the force controller. If the sensed
walking speed is too slow, for example, as a result of the
high friction of the weight, the desired force value would
be increased, and thus the motor output would increase.
Velocity feedback control has been shown several times
(e.g., Ref. 526). Therefore, in the insects investigated,
velocity feedback control is probably applied during both
swing and stance. In addition, force control might be used
during stance. Various types of experimentally induced
load changes showed that the duration of the swing,
which can depend on step period, is shorter for a given
step period when the load increases (stick insect, Refs.
227, 252; crayfish, Ref. 141). This shows that load mea-
sured during stance can influence the movement during
swing.

1. Transition stance to swing

Recently, it has been confirmed that strain acting on
the exoskeleton of the locust leg, which is monitored by
CS, can aid the transition from stance to swing. In parallel
studies, one on forces operating during walking and the
other on intracellular recording of the reflex pathway,
Newland and Emptage (395) reached the conclusions that
the tibial CS, mainly activated at the end of the stance
phase, directly excites the flexor tibiae MN and inhibits
the extensor tibia MN indirectly through an IN (see also
Ref. 155).

For the transition from stance to swing it could be
shown that both position and force are critical. Bässler
(27) and Dean and Schmitz (155) showed that manipula-
tion of the hair plates such that they incorrectly monitor
the leg being moved anteriorly, prevented or delayed the
stance-swing transition. The second part of the “active
reaction” also indicates that position signals, in this case
monitored by the femoral CO, can elicit the stance-swing
transition (33). An influence of position of the anterior leg
in the walking animal has already been shown by Cruse
(122) and Dean and Wendler (157). General stimulation of
all trochanteral CS of one leg or loading the whole animal
by a weight also prevented the start of swing (27). Dean
(153), however, showed that the situation is not simply
that higher load shifts the PEP in posterior direction.
Rather, this is only true for external forces smaller or
equal to body weight. For larger forces, the opposite
effect is found, indicating that not load per se but rather
load in combination with movement velocity is the impor-
tant parameter.

This agrees with earlier findings where stick insects
were observed walking up a vertical wall (120). Cruse
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(127) showed that a sudden unloading of a leg during
stance could elicit swing only beyond a critical posterior
leg position. Therefore, both load and position are impor-
tant parameters for the stance-swing transition. However,
during stance, position appears not to be a controlled
variable.

Activities of tibial CS in freely walking cockroaches
are correlated with the stance phase activity (553–555).
Proximal sensilla are activated just before the burst from
the slow extensor MN, whereas the distal sensilla burst
near the end of stance. In this case, the afferents might be
adequate to facilitate the onset and the end of the stance
phase. In rapid walking (step frequency more than 5 Hz),
however, activities of the CS shift in phase. The proximal
sensilla burst occurs after the onset of the extensor acti-
vation and the distal sensilla after its termination. In that
case, these receptors cannot participate in the initiation
or termination of the stance phase. Further reviews on
swing initiation in cockroaches have been provided by
Pearson (411–413).

In the crustaceans, it has been demonstrated that
CSD within the leg are mainly involved in reflexes increas-
ing levator or depressor activity and in maintaining the leg
activation (see Fig. 2). On the contrary, FCO seem to be
involved (as the insect CS) in compensatory reactions
that can facilitate the switch from stance to swing. The
reflex elicited by FCO stimulation is similar at rest and
during walking. It facilitates the levator and the promotor
MN (normally active during swing), and it inhibits the
depressor and the remotor (stance phase muscles) (see
Fig. 3). Such electrical stimulation, imposed during free
walking in a crab or during treadmill driven walking in the
rock lobster (353, 389, 390), induces different responses
depending on the phase of the step cycle. During the
swing phase, the stimulation increases both the intensity
and the duration of the levator bursts, while during stance
it terminates the depressor burst and reinitiates a new
swing phase. At the end of the stance phase, the effects
are smallest. The interpretation of this result is that the
artificial induction of the swing phase is least disturbing at
this moment, since it coincides with the time this phase
would have started anyway. The FCO activation not only
increases the levator activity in the stimulated leg, but it
also increases depressor activity in adjacent legs (Fig. 3).
This pattern is exactly as expected if FCO reflexes assist
the ongoing locomotor activity, since the swing phase of
one leg is coupled to the stance phase of neighboring legs.
During the stance of normal walking, the FCO reflexes
presumably have little effect, although these receptors
may be quite active during this period. However, other
receptors are activated in parallel, and the resultant affer-
ent input can interact with the signals from the FCO and
reinforce the stance-generating mechanism.

2. Transition swing to stance

The end of the swing movement is determined by
ground contact. This is most probably registered by the
different load sensors mentioned. In insects, it is likely
that different sensory hairs on the tarsus further contrib-
ute to this signal but are not essential because destruction
of the tarsus does not prevent the swing-stance transition.
The end of the swing can, however, also be determined by
position sensors. In the stick insect, this position is given
by the position of the next anterior leg (56, 122, 137, 155,
157). Influence of position was also shown by Bässlers
classical experiment (25) of the crossed receptor
apodeme. Here the tendon of the femoral CO was manip-
ulated such that the CO recorded flexion when the joint
extended, and vice versa. This change of sign did not
influence leg movement during stance possibly because of
mechanical coupling with the other intact legs but pre-
vented the leg from finishing the swing movement. Force
seems not to be controlled at touchdown (131) in contrast
to findings from vertebrates described below.

If the leg strikes an obstruction during swing prevent-
ing it from moving forward, or touches the ground with a
part of the leg other than the tip, different correction
reflexes are described (34, 132, 152, 156, 417). A load
higher than 0.5 g during swing may suffice (152). One can
assume that these reactions require a detailed analysis of
the signals from the different load and position sensors as
well as probably the tactile hairs dispersed over the leg.

B. Vertebrates

For some rhythmic movements such as mastication,
there is good evidence for the contribution of load-com-
pensating reflexes (406). In contrast, such a contribution
has been particularly difficult to prove for locomotion,
presumably because it is very difficult to apply well-con-
trolled load perturbations during gait. In principle, load-
related feedback can reinforce stance activity either di-
rectly through spinal reflex pathways or indirectly
through an excitatory effect on the part of the generator
network involved in the production of extensor activity.
Both pathways can produce effects on the extensor out-
put amplitude, whereas effects on the duration and on the
timing of the stance/swing transition can be attributed to
actions on the generator.

1. Load and amplitude of extensor activity:

proprioceptive reflexes not necessarily

involving the CPG

How much of the activity in extensors during the
stance phase of gait depends on load feedback? During
walking, the contribution of passive and active muscle
properties versus reflexes in cat and human remains a
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matter of debate. Just after touchdown a sharp rise in
EMG activity is seen in ankle extensors in both species. In
the intact cat, the EMG rise occurs some 10–25 ms after
contact. Initially, this was attributed mainly to stretch
reflexes (and not to cutaneous reflexes, since anesthesia
of the foot pads did not affect the peak; Ref. 357). How-
ever, recently, it was found that the peak persisted when
cats stepped on an actuator-controlled trap door, thereby
withdrawing ground support just before foot contact
(244). This suggests that the activity is mainly central in
origin under these conditions. This conclusion is in line

with the finding that in monkeys trained to land either on
a solid surface or on a tissue paper “false” floor, no
difference was found in the peak extensor EMG just after
touchdown (348). In cats during landing after a free fall,
there was an increase in ankle extensor EMG just before
landing, followed by a sequence of suppression and acti-
vation at touchdown (439). This sequence was unaffected
by local anesthesia of the plantar cushion, but the authors
argued that some of the observed effects may have been
related to proprioceptive reflexes. For the comparison
with insects, it is noteworthy that, as was mentioned

FIG. 2. Physiology of cuticular stress detector afferents in crayfish. Both receptor cuticular stress detectors CSD1
and CSD2 are disposed in a soft patch of cuticle in proximal part of walking legs. They have been studied both in an in
vitro preparation (A) and chronically during walking (B). A: in an in vitro preparation, it has been demonstrated that
some of afferents are monosynaptically connected to proximal leg muscle motoneurons (dep, depressor; lev, levator).
For example, left panel shows a monosynaptic connection between a CSD1 terminal afferent and a depressor motoneu-
ron (several sweeps have been superimposed). In right panel, electrical stimulation at different intensities of CSD2
afferent nerve shows complexity of connections with an anterior levator motoneuron. In this case, it has been possible
to identify 2 early and 5 late excitatory postsynaptic potentials (EPSP) in same motoneuron. [From Leibrock et al. (352).]
B: during locomotion on a treadmill, CSD1 and CSD2 have been recorded simultaneously (right) and with depressor
muscles (left). Movement of fourth leg has been recorded at its tip (AEP, anterior extreme position of leg; PEP, posterior
extreme position of leg). If CSD2 discharges exclusively during stance phase (with depressor muscle), CSD1 becomes
active at end of swing phase and during stance phase (see dotted line). [Adapted from Marchand et al. (370).]
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above, no centrally produced effect was found in the stick
insect.

What happens with load feedback in the rest of the

stance phase? There is a wealth of data available on the
activity of single muscle afferents and g-MN during cat
gait (359, 361, 441, 482), but the question remains how

FIG. 3. Activity of funnel canal organ (FCO) mechanoreceptors in crab Carcinus maenas during lateral walking (A).
Legs on side of direction of walking are termed leading legs, whereas those of opposite side are termed trailing legs (top

left). In chronic animals, electrodes are positioned for recording simultaneously sensory and motor activities (top right).
EXT, extensor; FLE, flexor; OP, opener; CLO, closer. In bottom record, sensory activity of 2 units (one large and one
smaller with dots along spikes) are presented in relation to discharge of depressor (DEP) muscle. B: with a special device
producing a continuous chronic bending of dactyl and inducing a continuous FCO mechanoreceptor activity it is possible
to characterize the role of these receptor during walking. In comparison with normal walking, it appeared that bending
of leg 3 dactyl significantly diminishes activity of depressor of that leg (leg 3), enhancing discharge of 2 ipsilateral
adjacent legs (legs 2–4). [Adapted from Libersat et al. (354).]
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much of this activity is used in load-compensating re-
flexes? Applications of brief stretches are difficult to per-
form in intact cats but can be achieved in reduced cat
preparations. In the mesencephalic cat, the role of re-
flexes versus muscle properties of extensors has been
evaluated by several authors (2, 37). In the cat, the intrin-
sic muscle stiffness of ankle extensors gradually de-
creases during stance, as does the gain of the stretch
reflex pathways to these muscles (2). Hence, under these
conditions, the goal is not to maintain total stiffness (as
the sum of reflex and intrinsic sources) constant. Accord-
ing to the most recent study (37), reflexes could contrib-
ute 23% of the movement-related force of the triceps surae
during locomotion. In all these cases, however, one has to
take into account that the reflex gain in decerebrate prep-
arations can differ considerably from the one found in
normal cats (293). It is also still unclear as to which
pathway is involved in these effects. Sometimes the am-
plitude increases are accompanied by prolongations of
the stance phase duration. In such cases it is possible that
a pathway involving the CPG is used. However, when
the effects are purely related to amplitude, then oligosyn-
aptic pathways outside the CPG are the most likely
source (377).

In humans, Dietz et al. (174) found that there was a
sudden increase in ankle extensor EMG just after footfall
in human running, thereby providing evidence for a role
of afferent feedback in the generation of this activity. This
feedback was thought to be less important for these mus-
cles during walking, but this remains a controversial
point. Some used a pneumatic device to deliver brief
ankle rotations during walking (542, 544) and estimated
that the stretch reflex could contribute up to 30–60% of
the activation of soleus during walking, especially during
the early part of stance (162). This conclusion was con-
firmed by the study of Sinkjaer et al. (497), using a semi-
portable stretch device to study soleus stretches in vari-
ous phases of the step cycle.

Other muscles were tested as well. Stretch reflexes
elicited in quadriceps were largest at the moment of im-
pact and then gradually decreased during stance (169).
Stretch reflexes in biceps femoris, a knee flexor, are en-
hanced in the first extension phase of swing (119). This
would be consistent with the idea that, during normal gait,
the activity in this muscle during this period of the step
cycle is partly generated through stretch reflexes, as was
proposed earlier by others (421, 441, 502).

Nevertheless, during gait, the question of feedback is
still controversial because it is quite difficult to produce
the same mechanical stimulation during different phases
of the step cycle reliably. Therefore, many authors have
used electrical stimulation and H reflexes to study oligo-
synaptic pathways during walking (82, 117, 170, 238, 386;
for review, see Ref. 52). By simultaneously monitoring the
M response (elicited by stimulation of MN), it is possible

to control the stability of the stimulation during the move-
ments. Several reviews of these studies are available (162,
198, 375, 507). Basically, it was found that the amplitude
of H reflexes in soleus is generally lower during walking
than while standing (82, 386; for review, see Refs. 52, 505).
This reduction in H-reflex amplitude is especially promi-
nent when walking is made more difficult, for example, in
beam walking (358). During the step cycle, the soleus
responses are suppressed during swing (546), small dur-
ing early stance, and largest in late stance. In contrast, in
quadriceps, the H responses are largest at the onset of the
stance phase (170). This is functionally meaningful, since
facilitation of quadriceps at the onset of stance may help
in weight support.

For quadriceps, the behavior of H reflexes (170)
largely agrees with that of reflexes elicited with tendon
taps (169). For soleus, however, there is a clear difference
because H reflexes are actively suppressed during swing
(546), while stretch reflexes are not (497). Sinkjaer et al.
(497) attribute this difference to more prominent presyn-
aptic inhibition induced by the synchronous electrical
volley. As pointed out by Sinkjaer et al. (497), the H- reflex
responses are usually about 10 times larger than the
stretch-induced responses. Hence, it may be that presyn-
aptic influences differ in relation to the massive H-reflex
volleys, as compared with the more modest and less
synchronous Ia discharges related to stretch.

2. Load and amplitude of extensor activity:

exteroceptive reflexes not necessarily

involving the CPG

Because a lot of afferent activity is generated from
the skin of the foot after touchdown (498), the question
arises as to whether this activity could be used to support
ongoing muscle activations during the stance phase of
gait. The evidence pointing in this direction is derived
from the observation that electrical stimulation of nerves
that supply the skin of the foot can yield potent reflex
activations in various leg muscles, especially during gait
both in cats (190) and in humans (189, 543). Both in the
premammillary (190) and in the intact (193) cat, stimula-
tion of the sural nerve enhances the burst of activity in
ankle extensors.

In humans, the reflex responses have a latency of
;80 ms, which is quite long but still well within the range
of durations of the human stance phase during running or
walking. Stimulation of the sural nerve, which supplies
the lateral side of the foot and ankle, strongly activates
the biceps femoris during the stance phase, while having
little effect in semitendinosus (196, 515; for equivalent
results in cat, see Ref. 432). Both muscles are hip exten-
sors and knee flexors, but biceps femoris causes external
rotation (exorotation) of the lower leg and foot, while
semitendinosus does not. Similarly, during the stance
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phase, sural nerve stimulation activates the medial gas-
trocnemius more than the lateral gastrocnemius, presum-
ably producing ankle extension in combination with foot
exorotation (201). These effects are quite specific, since
biceps femoris reflexes are barely present after stimula-
tion of nerves supplying other parts of the foot (533),
and they are strikingly similar to results seen in the cat
(1, 349, 400).

This specificity is the basis of a rotation assistance
hypothesis (197) as adapted from Hugon (304). The basic
idea is that, during the stance phase, the skin of the lateral
side of the foot is activated, which reflexly induces foot
exorotation. It is important to point out that in humans, a
small part of the propulsion during the stance phase is
provided by foot exorotation. Hence, the proposed feed-
back system can be viewed as a stance-reinforcing circuit
(the activation of biceps femoris supporting both hip
extension and foot exorotation in this part of the step
cycle). In conclusion, in motor control in general, and in
locomotion in particular, the relative importance of pas-
sive versus reflex-mediated stiffness depends on the type
of muscle investigated (extensor vs. flexor), on the con-
traction level (499, 518), on the task (walking vs. running),
on the type of preparation studied (intact vs. decere-
brate), and on the type of afferents involved (propriocep-
tive vs. exteroceptive). There is now a growing body of
evidence supporting the contention that part of the mus-
cle activity during stance may be reflexly generated
through pathways some of which do not involve the CPG.
To demonstrate actions through the CPG, one has to find
effects not only on burst amplitude but also on the dura-
tion of the phases.

3. Sensory influences on the CPG

Because spinal cats can adjust their walking pattern
to the speed of a treadmill belt, it is evident that periph-
eral feedback signals can influence the timing of the
phases as produced by the spinal CPG (221; for review,
see Refs. 260, 450, 453, 534). At the end of the stance or
swing phase, a sensory environment is created on which
the locomotor system can rely to switch automatically to
the subsequent phase. Is there evidence in mammals that
some sensory triggers are specifically used for this pur-
pose? In analogy with the invertebrate work, one could
expect two elements to be of crucial importance, namely,
limb position and loading. At end stance, the limb is
extended and unloaded, whereas at end swing the limb is
flexed and loading starts. To demonstrate that these sen-
sory cues are indeed involved in phase switching and
actions on the CPG, one should find that 1) the particular
phase switch is blocked when the appropriate sensory
state is not reached, 2) the imitation of these sensory
states can induce phase switching, and 3) rhythm entrain-
ment and/or resetting can be achieved.

It is not always easy to distinguish between load and
position-related feedback. Both in the premammillary
(416) and spinal cat (261, 262), it was shown that stopping
the movement of the leg in stance prevented the onset of
swing [much as was observed in the stick insect (527) and
the lobster (99)]. In the cat, the stepping rate on the
contralateral side was increased during the period of
block of the ipsilateral rhythm. If the ipsilateral leg was
then brought backward, a flexion of the limb was initiated
at hip angle that approximately corresponded to the angle
at which the cat usually switched to flexion (equivalent
results were described for the stick insect, Ref. 127). It
was suggested that these results could best be explained
by assuming that the proximal joint (the hip) of the ipsi-
lateral leg failed to reach a threshold extended hip posi-
tion (263). However, the same data can be explained by
the prevention of hip extensor unloading (337), since
holding the limb in stance is equivalent to resisting hip
extension.

4. Load and proprioceptors

When gravitational loading is increased in cats, the
extensor activity not only gets larger but also lasts longer
(403). Conversely, unloading of extensors leads to induc-
tion of swing through unloading. In both intact (244) and
spinal cats (288), an unexpected loss of ground contact
during the stance phase induces a premature onset of the
next swing phase and prolongs the ongoing contralateral
stance phase (see scheme in Fig. 4).

Both reactions are compatible with an explanation
that extensor unloading facilitates the onset of the swing
phase, but the question remains which proprioceptors
and which muscles are involved. Proprioceptors from two
types of extensors have received considerable attention,
namely, those from ankle and hip extensors.

To the group of ankle extensors afferents belong Ia
and Ib afferents from muscles such as triceps surae and
plantaris. To demonstrate the effects of this type of affer-
ent in blocking stance-swing (ST-SW) switching, high de-
cerebrate cats have been used (“premammillary or tha-
lamic cats”; Ref. 190). These animals can walk on a
treadmill while one hindlimb, which is partly denervated,
is being held in a fixed position. The fixation allowed
measurement or manipulation of both the force and the
length of ankle extensors, while these muscles were
rhythmically activated in the locomotory process. Be-
cause limb position was constant, these manipulations
could be used to activate muscle or cutaneous load re-
ceptors selectively, independent of changes in hip posi-
tion receptors that might play a role in regulating phase
transitions. Applying a gradually increasing stretch to the
Achilles tendon led to an increase both in amplitude and
duration of the rhythmic bursts of the ankle extensors,
while the ankle flexor bursts were reduced and eventually
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disappeared in an all-or-none fashion (191, 416). The
flexor burst failures indicated that afferent input from the
stretched extensors reached premotor centers involved in
the generation of the bursts.

In principle, both GTO and spindles of the stretched
muscles could be involved. To discriminate between
these two possibilities, the same sort of experiments were
made (fixed hindlimb) but now with ventral root stimula-
tion to obtain a selective activation of Ib afferents. The
latter method was used to induce contractions in the
ankle extensors. When the ventral root stimulation
strength was kept below the level for the activation of
g-MN, a contraction was induced that produced an in-
crease in firing of the Ib afferents, while simultaneously
reducing the firing rate of Ia afferents (Fig. 5, top). Con-
tinuous stimulation of the appropriate ventral roots led to
activation of ankle extensors and suppression of rhythmic
ankle flexor bursts (Fig. 5; see also Ref. 191).

It was concluded that, during walking, the Ib activity
of extensors can reinforce the ongoing extensor activity
and prevent the initiation of flexor activity (191). This
would seem to be functionally meaningful because it pro-
vides a mechanism whereby the initiation of the swing
phase can only occur when the limb is sufficiently un-
loaded and Ib extensor activity falls below a given thresh-
old level. Such a mechanism implies that extensor Ib
input can have direct access to the central sites involved
in the generation of flexor and extensor activity during
locomotion (Fig. 4).

FIG. 4. Schematic representation of current hypothesis about reflex
pathways of load-detecting afferents in cat. Central pattern generator
(CPG) contains flexor (F) and extensor (E) half-centers, controlling
flexors (Flex.) and extensors (Ext.), respectively. Group II cutaneous
afferents are from foot sole, and group I muscle afferents are from
extensors in leg. For further explanation, see text.

FIG. 5. Responses of single triceps surae (iE, ipsilateral extensor) afferents to stimulation of S1 ventral root, in a
premammillary cat at rest (top traces) and during walking (bottom traces). Top left: Ib afferent firing from a Golgi tendon
organ with superimposed trace of force produced by parent muscle (iE force). Top right: Ia afferent firing from a spindle
from same muscle. At rest, electrical shocks to S1 ventral root (0.05-ms pulses at 60 Hz and at 1.5 times motor threshold
and at 90 Hz) induced a tonic contraction, leading to increased firing of Ib afferent and decreased firing in Ia afferent
(ventral root stimulation was below threshold for g-axons). During walking (bottom), electromyogram activity in
ipsilateral flexors (iF, in casu tibialis anterior) alternated with contractions in fixed triceps surae (force records on
bottom). Application of same S1 ventral root stimuli (horizontal bar) similarly induced a contraction in ankle extensors
(now superimposed on rhythmic contractions) and similarly affected firing of afferents (increase for Ib, decrease for Ia).
However, in addition, stimulation suppressed generation of rhythmic flexor bursts (iF) in fixed hindlimb of a cat, which
walked freely with remaining 3 limbs on a treadmill. (From J. Duysens and K. G. Pearson, unpublished observations.)
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An alternative method for the selective activation of
muscle afferents is to use graded electrical nerve stimu-
lation. In the intact cat (193), little effect was found after
lateral gastrocnemius soleus (LGS) stimulation at group I
strength but, as was claimed later (535), this may have
been due to the use of inappropriate stimulus parameters
(low frequency) and timing of experiments (too early
after surgery). However, it is also possible that such ef-
fects are simply not present in intact cats in which there
is an abundance of sensory cues along with input from
descending systems. Whelan and Pearson (537) compared
the effects of stimulation of the LGS nerves in cats first in
the intact state and later in the decerebrate state. They
found that stance-prolonging effects could be evoked in
both types of preparation, but the effects were clearly
weaker in the intact animal. During swing, the same type
of stimulation can reset the cycle to extension. For both
the stance and the swing effects, stimulation of LGS was
much more effective than of medial gastrocnemius. How-
ever, after cutting the LGS nerve, the stimulation of the
medial gastrocnemius became much more potent, thereby
illustrating the plasticity potential of these pathways
(536). Whelan et al. (535) found that it was necessary to
stimulate at a strength recruiting both Ia and Ib afferents
to obtain extensor prolonging effects. For a selective
study of Ib effects, the use of either medial gastrocnemius
or LGS stimulation has limited value, since one cannot
readily distinguish between Ia and Ib fiber effects. In
decerebrate rats, a prolongation of extensor bursts can
also occur after stimulation of gastrocnemius nerves, at
least when adult rats are used (229). In neonatal rats with
fictive locomotion, one observes similar effects only when
high-intensity stimulation is used (310).

Another argument that can be used to show that Ib
input from ankle extensors has access to the CPG is
rhythm resetting or entrainment. For this purpose, brief
periods of low-intensity stimulation of ventral roots (191)
or of extensor nerves (111) have been used. These inputs
were shown to cause rhythm resetting. Activity from low-
threshold afferents from flexors never caused resetting
(111). Entrainment of the rhythm was achieved in several
ways. Both Conway et al. (111) and Pearson et al. (418)
used periodic stretches of extensor muscles. They could
only entrain the rhythm when the stretches were suffi-
ciently large to recruit not only Ia but also Ib afferents.
Ventral root stimulation, inducing contractions which
were certainly strong enough (.10 N) to activate exten-
sor Ib afferents, caused reliable entrainment (418). A
similar result was achieved by Pearson and Collins (415)
using direct application of shocks to the plantaris nerves.
The Ia afferents in plantaris nerves make either no or
weak connections with MN of gastrocnemius medialis,
and therefore the medial gastrocnemius reflex responses
following weak stimulation of the plantaris nerve can be
reliably ascribed to Ib activation. Plantaris stimulation

proved particularly effective in entrainment of the loco-
motory rhythm. Neither the entrainment nor the burst-
enhancing effect was present when plantaris was vibrated
so as to optimally activate Ia afferents.

Although involvement of Ib afferents in the flexor
delaying effects is well documented by many experi-
ments, it should be mentioned that a limited set of data
suggests that Ia afferents may participate as well. Guertin
et al. (271) made some observations during mesence-
phalic locomotor region (MLR)-induced fictive locomo-
tion, suggesting that Ia afferents have much the same
effect as Ib afferents in prolonging the extensor activity in
the stance phase. This would indicate that Ia-Ib conver-
gence is not only present in pathways subserving auto-
genic inhibition (365; see sect. VB2) but also in those
leading to global extensor activation. The Guertin et al.
(271) study also showed that the latter effects are primar-
ily induced by stimulation of afferents in ankle extensors
and much less from other extensors (271).

Alternatively, extensor Ia afferent input may be im-
portant for yet another pathway that is selectively opened
during locomotion. In decerebrate cats, McCrea et al.
(377) showed that activation of these afferents evoke
disynaptic EPSP in extensors in periods of fictive loco-
motion only. The short latency of these responses make it
unlikely that they act on the CPG network (9).

5. Load and exteroceptors: load-sensitive receptors

in the skin of the foot

As mentioned above, during the stance phase of the
walking cat, gravitational loading of a single limb can be
detected by cutaneous afferents from the foot. The poten-
tial for affecting the transition from stance to swing by
cutaneous input from the foot strongly depends on the
presence of other sensory input, which under normal
circumstances helps stabilize the rhythm. In intact cats or
humans, the application of brief nonpainful skin stimuli
can increase the length of the swing phase slightly and has
little effect on total cycle duration (179, 193, 199).

In the premammillary cat, the changes are more pro-
nounced, especially if rhythmic output is studied in a
fixed limb that is partly deafferented. Under such condi-
tions, stimulation of nerves innervating the skin of the
foot during stance can delay the onset of flexion (186,
190). The functional interpretation is similar to the one
advanced for Ib input. Skin afferent input, related to limb
loading during stance, is able to block the onset of the
swing phase. Inversely, unloading signaled by the with-
drawal of this type of input is a trigger for the onset of
flexion. Hence, one would predict that such cutaneous
input can inhibit the premotor center for the generation of
flexion during swing (the “flexor half-center”). Using L-
dopa-treated spinal cats, Jankowska et al. (318) showed
that late flexor discharges, presumably originating from
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the flexor half-center, always occurred after termination
of a period of stimulation (for example, of cutaneous
afferents). It has been argued therefore that the late flexor
reflex discharges may be due to disinhibition (“rebound
hypothesis,” Ref. 187). More recent work on sural nerve
stimulation during L-dopa-induced fictive locomotion fur-
ther supports this idea (479). It was found that such
stimulation could prolong extension when given during
the extension phase, and terminate flexor activity and
induce extensor activity when given during the late flex-
ion phase. It is known that cutaneous afferents feed into
“alternative pathways,” which can activate extensors and
inhibit flexors (for review, see Ref. 473). Hence function-
ally, these pathways resemble those described above for
Ib afferents. Load-detecting cutaneous afferents prevent
the generation of the swing phase in much the same way
as load-detecting afferents from extensors. In view of this
common role, it may not be surprising that extensive
convergence occurs of Ib and cutaneous afferents onto
common IN (365). The inhibitory effects of foot afferents
on the flexor generating circuits are spinal, since they
persist not only in MLR-evoked fictive locomotion (271)
but also in decerebrate spinal cats injected with L-dopa
(112). The latter authors (112) found that low-threshold
stimulation of the deep or plantar nerves during late
flexor reflexes abruptly terminated flexor activity. Medial
plantar nerve stimulation did not produce this effect.

Because cutaneous afferent activity from the foot can
cause shifts in phase transitions, one would expect such
input to be effective in resetting and/or entrainment of the
rhythm as well. First such input was shown to be potent
enough to reset the contralateral CPG (186). Electrical
stimulation of the pad of a freely moving hindlimb of a
premammillary cat during the ipsilateral stance prolonged
the contralateral flexor bursts. The same stimuli given
during contralateral stance induced a prolongation of the
contralateral extensor bursts. Hence, a reversal occurred
from crossed flexor to crossed extensor facilitation. This
type of reversal was also observed by Gauthier (239)
using a decerebrate preparation in which the animal was
suspended. In both cases the reflex effects were evaluated
in a limb that participated little or not at all in load-
bearing and therefore there was no stabilization of the
rhythm by other load-dependent afferent activity. It
should be mentioned that the term reversal is used here in
a broad sense, indicating that the same stimulus can give
opposite responses. In the strict sense, one would expect
that the reversal of reflexes implies that opposite re-
sponses of exactly the same latencies can be found under
different conditions. As mentioned by Duysens et al.
(200), these conditions are rarely met in mammalian sys-
tems.

The resetting of the rhythm also depended on the
phase of the step cycle. It was most pronounced for
stimuli given near the middle of swing or stance, while

stimuli given at the transition points between ipsilateral
flexion and extension phases were least effective in re-
setting the contralateral rhythm (187). More recently, ip-
silateral rhythm resetting has been demonstrated as well
(479). In general, the types of input that can delay flexion
can facilitate the onset of extension as well. This input is
much more specific than the one involved in the facilita-
tion of flexion. For hip movements during fictive locomo-
tion, it is only hip extensions and not hip flexions that
have the potential to induce the extension period prema-
turely (8). For input from the foot in the premammillary
cat, it is only the low-threshold skin and muscle afferents
from this region (tibial nerve) that have the same poten-
tial (187, 190). Hence, in contrast to flexor enhancing
input, the afferents that have been shown to enhance the
swing to stance switch are highly specific and related
to events that normally take place during this period
(namely, hip extension and loading of the foot).

6. Hip sensory signals

The idea that there is a special hip signal that is
important for the onset of flexion at the end of the stance
phase is based on the notion that the swing phase is
initiated when the hip passes through a particular thresh-
old angle. The latter idea was originally based on the
observations of Shik and Orlovsky (490), who found that
raising the anterior or posterior part of a normal dog
walking on a treadmill induces a prolongation of both the
stance phase and the step cycle of the raised limbs. They
reasoned that the prolongation of the stance phase in the
raised limbs may have been correlated with an unchanged
angular excursion of the hip and shoulder, and hence,
they concluded that “the initiation of the transfer phase is
determined by the onset of threshold extension of the
limb, i.e., at definite values of the joint angles.” Grillner
and co-workers (7, 8, 456; for review, see Refs. 261 and
450) provided further evidence indicating that afferent
signals from the hip are crucial for the reflex control of
walking. They showed that direct input from hip afferents
to the CPG is able to reset and/or entrain the locomotory
rhythm. Using small-amplitude sinusoidal hip movement
of a partially denervated hindlimb, Andersson and Grill-
ner (8) could entrain locomotor rhythmicity in low spinal
cats with L-dopa-induced fictive locomotion. Which recep-
tors are involved? Two possible candidates are the recep-
tors from the hip joint and those from hip muscles (420).
Hiebert et al. (290) used selective stretches of various
hindlimb muscles and were able to show that the flexor-
inducing effects are mainly related to stretch of hip flex-
ors (ankle flexors such as tibialis anterior had similar but
weaker effects). As yet, it is unclear whether hip joint
afferents contribute to the hip signal that has an impor-
tant impact on the regulation of the CPG. In fact, little is
known about the role of joint afferents in locomotion in
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general. For the knee, Freeman and Wyke (232) showed
that cats had great difficulty in walking along a narrow bar
when their posterior and medial articular nerves were cut.
However, Lindström and Norrsell (356), doing very simi-
lar experiments, were unable to detect any deficits at all.
Joint afferents from the hip may be of greater importance,
since it is conceivable that they play a dominant role in
reflexly inducing the swing phase at the end of stance.
However, hip denervation has very little effect. Kriellaars
et al. (337) anesthetized the hip joints and found no effect
on the ability of hip movements to entrain the fictive
locomotor rhythm in decerebrate cats. In fact, their pro-
gressive denervation of the hip joint experiments showed
how important just a few hip muscle afferents were in
entraining the rhythm. Furthermore, the observation that
bilateral hip denervation either in cats (192) or humans
(256) does not induce major deficits in the pattern of
locomotion or in position sense (256) indicates that joint
afferents from the hip are not indispensable for normal
locomotion.

7. Critical periods for phase switching

The effectiveness of a given input critically depends
on the time of application of the stimulation in the motor
process. A striking example is the cat respiratory system.
The inspiratory phase consists of two parts. During the
initial part it is not possible to terminate the inspiratory
process by adding afferent input promoting the transition
to expiration (Hering-Breuer reflex). In contrast, such
transition can be induced by the same input given in the
second part of the inspiratory phase. A similar subdivision
can be made for the flexion phase of locomotion in cats.
Touchdown is normally accompanied by an afferent bar-
rage from the footsole (as demonstrated with cuff elec-
trodes around the tibial nerve in cats; see Ref. 193). When
this input is simulated by electrically stimulating the pos-
terior tibial nerve in premammillary cats with one hind-
limb fixed, then a flexor enhancing and prolonging effect
is obtained for shocks given in early flexion period (187).
However, the same input induces a premature extension
period when given later in the flexion phase. The transi-
tion between these two parts of the flexion phase is very
sharp.

Is there a similar division for the stance phase of
locomotion and the expiratory phase of respiration? For
the respiratory system of both cat and rat there is good
evidence for the existence of two stages of expiration
(445). Changes in respiratory rate are achieved by varia-
tions in the duration of the second phase, which starts
after cessation of phrenic nerve activity. In contrast, the
first stage, which appears immediately after inspiration, is
relatively immune to feedback. The situation during loco-
motion is somewhat similar. The phase dependency of the
“swing-blocking” effect is somewhat difficult to evaluate,

since often the duration of the stimulus trains used was
quite long (200–300 ms). Nevertheless, it is clear that such
stimuli, when applied to skin nerves of the foot, have little
or no effect when given during the first part of the exten-
sor burst in walking premammillary cats (187, 190). Most
effective for delaying the next flexion phase are those
stimulus trains that are given during the last period of the
extensor bursts. At the behavioral level, corresponding
results have been described in the stick insect (138).

Afferent input, which is able to induce flexor bursts
prematurely, is also most effective near the final part of
the extensor burst. For example, stimulation of the com-
mon peroneal nerve in the premammillary preparation
has no effect on phase switching when given early in the
extensor burst, but the same input shortens the ongoing
extensor period extensively when given in the second half
of the extensor activity period (187). Similarly, the pre-
mature induction of flexor bursts by using ramp move-
ments of the hip seemed also more effective for stimuli
applied in late than in early extensor period.

For the Ib stimulation, there are no data yet about the
phase dependency of the swing-blocking effect. However,
there are differences in the short-latency Ib reflex effects
in the different periods. During fictive locomotion, the
stimulation of presumed Ib afferents from extensors in-
duces EPSP rather than inhibitory postsynaptic potentials
in triceps surae MN (246). The size of these EPSP is
largest at the transition from flexor to extensor periods
(later EPSP may be artificially reduced due to occlusion).
In the initial part of stance, the activity in extensors is
primarily aimed at counteracting gravitational load, while
during late stance these muscles are more and more
involved in propulsion. Although occlusion may partly
obscure some of the EPSP later in stance, it can be stated
at least that the data of Gossard et al. (246) are consistent
with an opening of Ib extensor facilitatory paths during
the initial loading phase of stance.

In summary, there are many indications that there is
a progressive facilitation of either the extensor or the
flexor generating networks in the course of, respectively,
the stance and swing periods (8, 186, 419). In this respect,
the extensor period of locomotion resembles the expira-
tory phase of respiration in that the effects on the upcom-
ing phase switch (ST-SW) are most pronounced for input
given near this transition. Changes in the duration of the
extension phase are rare for stimuli given at the beginning
of the extensor period. There is no evidence for a sharp
transition between the two parts of the extensor period
however.

8. Humans

In humans, there is growing evidence for the exis-
tence of a spinal locomotor CPG (79–81, 167, 176, 177,
240, 273, 334, 448, 449, 487; for review, see Refs. 451, 452).
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Some properties of this human CPG are very similar to
what is found in cat (for example, late reflex discharges
after electrical stimulation of the foot; Ref. 448 compared
with Refs. 280, 318). Little is known on the role of load
receptors on the human CPG, but some recent data sug-
gest that there may be some striking similarities with the
situation in the cat. Yang et al. (545) applied transient
loading to infants during the stance phase of stepping and
found that such loading prolonged the stance phase and
delayed the swing phase, much as was observed in cats
(see above). Furthermore, in adult humans, there are
some indirect indications that unloading of extensors may
be important for the initiation of swing in humans, much
as in invertebrates and cats. For example, when humans
change from standing to walking, they start by suppress-
ing activity in extensors such as soleus and then, with a
delay of ;60 ms, they contract flexors such as tibialis
anterior (113, 118). This result is consistent with the idea
that soleus Ib input has to fall below a given threshold
before tibialis anterior can be activated. Similarly, both
during walking and running, there is a tight coupling
between the decrease in background activity in ankle
extensors such as gastrocnemius lateralis and the onset of
flexor activity in ankle flexors, such as tibialis anterior.
Such observations would agree well with the idea that Ib
activity from these extensors inhibits the generation of
activity in the antagonist flexors. Unloading of these ex-
tensors at the end of stance reduces flexor suppression,
making it possible to release activity in flexor premotor
centers.

Very few studies have been concerned with load-
compensating reflexes in humans with neurological dis-
eases, yet it is of interest in the present context to men-
tion that there is indirect evidence for the existence of
facilitatory Ib paths to human ankle extensors in patients
with neurological diseases in which the pathway for au-
togenic Ib inhibition is suppressed (Parkinsons’ disease,
Refs. 63, 160; spasticity, Ref. 159). An early inhibitory
component (I1), following cutaneous stimulation of the
hand, is also reduced in these patients. These abnormal-
ities may contribute to the spastic muscle tone, although
changes in intrinsic muscle stiffness may contribute as
well (165).

For many patients with Parkinson’s disease, the most
difficult part is the initiation of walking. Is it possible that
in Parkinson’s disease the flexion at onset of swing is
blocked by inhibitory pathways from Ib or cutaneous
afferents? The difficulty in the initiation of walking is
known to be related to the loss of dopaminergic cells in
the substantia nigra. It is conceivable that this deficit
leads to an inability to activate a locomotor CPG by
descending pathways, but one should not overlook the
possibility that part of the problem is related to continu-
ous overactivity in pathways that inhibit the centers for
the generation of flexion movements (flexor half-center).

Furthermore, it is worthwhile mentioning that there is a
similarity between the stiff gait in these patients and in
infants (220).

C. Concluding Remarks

In all species described, the afferent feedback due to
loading during stance has three types of effects.

1) The stance muscle output always increases when
load is augmented. The types of receptors differ, but the
principle is the same. For example, in insects, the load-
induced afferent input from the tibial CS serves exactly
the same function as the stance muscle GTO in mammals,
namely, to increase stance muscle activity at the onset of
stance. The interpretation of these stance muscle-rein-
forcing effects can differ depending on the experimental
conditions and on the parameters studied.

Sometimes these reflexes can be explained in terms
of velocity feedback, but in other situations, it appears as
part of force or position feedback (see also sect. VII).

2) There are many examples showing that moder-
ately loading the extensors can prevent the onset of the
next swing phase during walking. This appears more and
more as a general basic rule that is functionally meaning-
ful, since it allows the automatic scaling of the duration of
the stance phase as a function of the load to be carried
(see also Ref. 412). For the cat, the hypothesis was ad-
vanced that load-detecting afferents, both from muscles
and skin, inhibit the center for the generation of flexion
during the swing phase.

3) A series of examples has been described to show
that load sometimes seems to induce flexion rather than
to prevent it. In some cases, excessive loads are involved
that may lead to rupture of extensors if the latter would
be too stiff. Instead, extensor inhibition occurs under
these circumstances in combination with a protective
flexion reflex. This situation is very similar to what has
been found in chewing. Slow moderate loading induces
extensor reinforcement (mouth closing), but fast strong
loading results in extensor suppression (mouth opening
to prevent damage to the teeth).

In addition, both in invertebrates and in vertebrates,
some afferent input that is specific for the end of the
stance phase is used to automatically induce the subse-
quent swing phase. Although this principle is general, the
implementation in the different species varies consider-
ably. In some invertebrates, the afferent signal at end
stance is derived from force-sensitive receptors in the
exoskeleton, but position clearly is an important param-
eter too. In mammals, the main proprioceptive signal at
end stance is derived from muscle stretch receptors in hip
flexors. In both cases however, the reflex actions are the
same, namely, a facilitation of the onset of the swing
phase.
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VII. PROGRAM- AND PHASE-DEPENDENT

REFLEXES DURING WALKING

A striking similarity across species is observed in the
way in which afferent input from load and position recep-
tors is transformed into a direct motor response. This
depends on the task in which the animal is involved. For
example, one type of load-compensating reflex during
standing may not be useful during particular phases of the
step cycle, when another type of reflex would be more
appropriate. The CNS, even of supposedly “simple” inver-
tebrates, is capable of modulating load-compensating re-
flexes and guiding the input from load receptors into quite
different pathways, depending on the requirements of the
task in which the animal is involved (96, 523). For exam-
ple, in the tadpole of Xenopus, a tactile stimulation is
gated through dorsal IN and facilitates the MN at an
appropriate time (494). These results demonstrate that
several interneuronal pathways are selectively facilitated
depending on the ongoing behavior. These variations in
afferent connections imply not only facilitatory pathways
but also some filtering action or inhibition. Hence, in this
section, the question is not how afferent activity shapes
the locomotor process, but instead, the issue is how lo-
comotion modulates the activity in the different pathways
to MN and to the CPG.

A. Invertebrates

Recent studies in invertebrates have demonstrated
that reflexes often vary in intensity and even in sign
depending on the ongoing motor task. A particularly good
example of such task dependency is the reversal from
resistance to assistance reflexes in the stick insect. Such
reversal occurs when the animal changes from the “inac-
tive” (resting) to the “active” (locomoting) state (25, 26,
31, 254). A femoral CO signals flexion and extension of the
femur-tibia joint. When the animal is inactive, the mechan-
ical stretch of this organ induces a resistance reflex and
provides negative feedback. In contrast, when the animal
is in the active state, stimulation of the same receptor
induces mainly an assistance reflex, i.e., the muscles ac-
tive during stance of forward walking receive extra exci-
tation (positive feedback, the active reaction; see Refs. 26,
29, 32).

DiCaprio and Clarac (161) demonstrated a similar
reversal in the crab. Sinusoidal stretch of the TCMRO
initially caused a resistance reflex. Retractor movement
induced a protractor response, whereas protractor move-
ment caused activation of the retractors. However, this
stimulation also caused a gradual increase in arousal and,
when a given threshold was reached, the reflex inverted in
sign (retraction movement now inducing retractor activa-
tion). This could be interpreted as an assistance reflex.

The reversal was thought to be due to the activation of the
circuitry involved in rhythm generation. Direct evidence
for this proposal came from experiments on an in vitro
preparation of the crayfish (209). At rest, activation of the
chordotonal induces a resistance reflex. After induction
of fictive locomotion (by adding 1025 M oxotremorine to
the bath), the same type of stimulation induced an assis-
tance reflex. In this latter case, the activation of a specific
IN switches the reflex (443).

However, the situation is not simple. In both exam-
ples there is also experimental evidence for a negative
feedback during stance. For the crayfish, the results of
Barnes et al. (21) clearly show the effect of a negative-
feedback system after an experimentally placed distur-
bance. In the stick insect, negative feedback in the walk-
ing animal was demonstrated in several investigations
(123, 143, 147, 463, 466) in the active but fixed animal
(526). Positive feedback is found in two ways. In one case,
the influence passes a yes-no decision. This formally cor-
responds to a system with saturation that prevents the
output of the positive-feedback system growing infinitely
(129, 303). In the second case, a direct positive feedback
could be shown to exist (133, 467). Here, infinite growth is
inhibited by application of a high-pass filter, a phasic unit
within the feedback loop. In the first case, the sense might
be to stabilize the state of the ongoing behavior, for
example, swing or stance. In the second case, the func-
tional sense is to exploit the physical properties of the
complicated mechanical system and thereby dramatically
simplifying the computation necessary for proper coordi-
nation of the great number of joints in a multilegged
animal. It is still unclear how we can have positive and
negative feedback at the same time. A possible solution
could be that error signals from negative feedback are
used to change the gain of the positive-feedback cir-
cuit (133).

It is interesting that dynamic properties of the feed-
back system change from the standing to the walking
state. Whereas in the walking animal the resistance reflex
appears best described as to be velocity dependent, in the
standing animal they are better described as being posi-
tion dependent. Although height control in the stick insect
was found in the standing (see above) and the walking
animal (27, 28, 121, 148), it is best described as each leg
being an individual height controller. The dynamic prop-
erties of the controllers are different for standing and
walking. In the standing animal, there is a phasic re-
sponse, whereas the walking animal does not show this
effect (148). Another example for a program-dependent
system is found in the gravity response of the stick insect.
When the animal stands on or walks along an oblique
surface, the body is rotated around its long axis to adjust
its vertical axis more to the gravity vector. This effect is,
however, much stronger during walking than during
standing (161a). This also shows that in height control the
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legs are not completely independent. Corresponding re-
sults have been found by Frantsevich et al. (230) for the
beetle.

Still another example of program-dependent reflexes
is described for stick insects. During standing, the avoid-
ance response of a leg due to a mechanical stimulus is
accompanied by an intersegmental leg placing reflex of an
adjacent leg to keep a stable posture (“compensatory leg
placing” reflex, Ref. 233). During walking, the same stim-
ulus results in a leg-lifting response of the adjacent leg
(“treading on tarsus” reflex, Refs. 251, 471). Such a mech-
anism seems to be quite universal and has also been
described in the crayfish for FCO receptors (94, 98).

During an ongoing central motor pattern, some reflex
pathways seem to be powerful and efficient only when the
CPG is expressed. Activity in these pathways is also reg-
ulated in a phase-dependent manner. Similarly, in systems
involved in the control of overground locomotion, there
are parallel pathways that are modulated by the central
rhythm. In this case, there are certain reflexes that assist
in load bearing and that should be facilitated during
stance. Equally important, however, is that there is then a
simultaneous suppression of those pathways the activa-
tion of which is inappropriate (in this case the levator
activating paths).

In general, in invertebrates the presence of CPG and
their role in sensory modulation has been well estab-
lished. In insects, however, there are still some uncertain-
ties about their presence in walking. Some of these un-
certainties may be related to methodological questions.
Data on insects are usually collected on dissected animals
but with most of the afferent inputs intact. Under these
conditions, it is relatively difficult to reveal the working of
a CPG. Isolation of the nervous system is difficult in
insects due to the presence of tracheal respiration. In
contrast, in some crustacean preparations, the thoracic or
the abdominal ganglia (or the stomatogastric ganglion)
have been totally isolated, thereby facilitating the demon-
stration of CPG activity. Nevertheless, in insects, a num-
ber of locomotor-related circuits have been identified.
Three types of IN have been described in the locust, the
cockroach, and the stick insect (66, 71, 73, 74, 347, 468):
the local spiking IN on which converge a great number of
afferent inputs, the intersegmental IN, and the local non-
spiking IN that are premotor. These IN contribute to
reflex activation, being intercalated between the afferent
inputs and the MN by forming parallel and in part antag-
onizing pathways (74, 329). They organize the motor out-
put to antagonistic muscles of the same joint as well as to
other joints by lateral inhibitory connections, and they
can adjust the gain of the local reflexes. They also inte-
grate the activity of different afferent inputs and are able
to redistribute the afferent message on different MN to a
given muscle (329). In the femur-tibia control system of

the stick insect, a great variety of IN is described that
determine the pathways to the MN (32).

The IN have different properties and determine
whether the feedback will be positive or negative.
Whether they are active or not depends on the network.
First results show that the pathways used by load recep-
tors connect similarly to local spiking and nonspiking IN
and then to MN (J. Schmitz and K. Schumann, unpub-
lished data).

The data are related to the different afferents stimu-
lated and have defined a “resistance state.” When real
locomotion can be simultaneously induced in the prepa-
ration, the reflex response can be reversed, and new
interneuronal connections occur giving an “assistance re-
flex.” Position, movement, and load receptors can be
involved in such changes. Similar switches have been
described in the crustaceans, but the changes have been
related more to the synaptic modification or to the intrin-
sic properties of MN and IN.

Another mechanism of phase-dependent modulation
concerns the gain of the resistance reflex through a pre-
synaptic control implying GABAergic IN. Cattaert et al.
(86) showed that primary afferent depolarization IN are
activated during fictive in vitro locomotion induced by a
cholinergic agent. These primary afferent depolarization
IN are able to modulate the chordotonal sensory message
depending on the CPG rhythms. Several other examples
of presynaptic mechanisms have been described, e.g.,
during crayfish escape behavior (331) and on the TCMRO
afferents during fictive locomotion (495). In insects, pre-
synaptic inhibition also seems to be a very widespread
phenomenon, but the different results have mainly dem-
onstrated that such a mechanism is under the control of
other sensory afferents via some specific IN (68), a situ-
ation also seen in crayfish.

B. Vertebrates

1. Program dependency of group I reflex effects

in the cat

A selective method for the activation of Ib afferents is
the stimulation of plantaris afferents. Conway et al. (111)
used plantaris stimulation in experiments in immobilized
spinal cats in which rhythmic locomotor neural activity
was induced by injecting L-dopa. Low-intensity stimula-
tion of the plantaris nerve increased extensor bursts and
eliminated flexor bursts. In clonidine-treated spinal cats,
Pearson and Collins (415) found that plantaris stimulation
enhanced the ongoing activity in medial gastrocnemius
MN during rhythmic locomotor activity, whereas the
same stimuli had a suppressive action on these MN when
there was no rhythmic activity. The switch from Ib inhi-
bition to Ib excitation was further demonstrated at the
intracellular level. McCrea et al. (377) were able to show
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how Ib inhibitory postsynaptic potential (IPSP) disap-
peared entirely during the periods of rhythmic alternating
flexor and extensor bursts.

A similar reversal from Ib IPSP at rest to Ib EPSP
during bursts of fictive locomotion was shown by Gossard
et al. (246). They were able to show that electrical stim-
ulation of Ib afferents is able to produce EPSP in extensor
MN, provided that the locomotor centers are activated
(clonidine or L-dopa injection in spinal cats or stimulation
of the mesencephalic locomotor region in decerebrate
cats). They proposed that the primary action of the ex-
tensor Ib afferents is excitation of the extensor half-
center (E) rather than inhibition of the flexor half-center
(F, see Fig. 4). The main argument in favor of this bias
toward E excitation is that large Ib EPSP can be evoked
in extensors even in the absence of rhythmic flexor activ-
ity. However, this point is not very strong, since the F may
be active at subthreshold level and therefore disinhibition
of extensors (through inhibition of the inhibitory F) re-
mains a possibility (for additional discussion on this
point, see Refs. 111, 376). One point that is clear is that the
suppression of the flexor activity by the group I input is
indirect. Conway et al. (111) showed that the Ib induced
hyperpolarization of flexor MN is not due to postsynaptic
inhibition but to disfacilitation (the removal of excitation
presumably coming from the flexor half-center).

A key feature for this line of research is the identifi-
cation of the Ib excitatory IN. Gossard et al. (250) found
that IN, thought to belong to CPG networks (lamina VII),
receive excitatory input from presumed Ib afferents from
plantaris during the extensor phase of fictive locomotion.
The CPG centers are thought to be activated through an
oligosynaptic pathway from the MLR (488). The short-
latency EPSP produced in extensor MN by such MLR
stimulation are facilitated by activation of plantaris Ib
afferents (55). These observations would fit with the pro-
posal that Ib afferents from extensors have excitatory
projections onto the extensor half-center of the spinal
locomotor CPG (270, 306). At any rate, both the data of
Gossard et al. (246) and McCrea et al. (377) leave no
doubt that there is a closing of an Ib inhibitory and
opening of an Ib extensor facilitatory path during loco-
motion.

How “private” this facilitatory path is remains a
largely unanswered question. Because activation of Dei-
ters’ nucleus is able to prolong extensor activity in the
stance phase, one might expect that the currently de-
scribed Ib extensor facilitatory path shares common IN
with the projection from the lateral vestibulospinal path-
way. Leblond and Gossard (350) tested this with the
spatial facilitation technique, but they found no evidence
for a common pathway.

How do these results from locomotion studies com-
pare with those obtained under static conditions? As men-
tioned above, Lafleur et al. (343, 344) found a rapidly

declining Ib inhibition in a wide variety of both antagonist
and agonist MN. It is not known whether these Ib induced
inhibitions in flexor MN are also due to disfacilitation, as
was observed by Conway et al. (111) during fictive loco-
motion. Hence, it is uncertain whether they are mediated
by IN, which are part of the spinal CPG for locomotion.
However, the short time course and the very wide distri-
bution (involving both flexors and extensors) of these
“static” inhibitions make this unlikely. It follows that
extensor facilitatory pathways may be masked at rest
and require to be studied during locomotion, when the
CPG network is active (fictive and real locomotion; late
flexor reflexes under L-dopa). In agreement with this,
Jankowska (316) has proposed that the Ib pathways, in-
volved in autogenic inhibition and rhythm resetting, re-
spectively, are subserved by different sets of IN.

Does the extensor facilitatory pathway constitute an
example of positive feedback? For a long time there has
been resistance to this idea because it was generally
assumed that positive feedback induces instability. How-
ever, Prochazka et al. (438) recently showed that positive
force feedback can indeed provide stable load compensa-
tion, complementing negative displacement and velocity
feedback. Based on experiments (437) and on simulations
(438), they argued that positive force feedback is appro-
priate because inherent properties of the neuromuscular
system prevent instability. The length-tension curve of
muscle ensures that positive feedback is self-limiting,
since shorter muscles produce less force (automatic gain
control). Furthermore, they found that the introduction of
long delays, compatible with the ones described for the Ib
extensor facilitatory pathways described above, further
stabilized the positive feedback (437, 438). In this way,
positive force feedback could be shown to have interest-
ing functional properties as to allow stable load compen-
sation and to explain the puzzling results of high feedback
delays; the stability of the positive-feedback system un-
expectedly increased with increasing delay.

2. Phase dependency

The two main sources of afferent input related to
limb loading are sense organs in the footpad (mechano-
receptors in the pad and in intrinsic foot muscles) and
proprioceptors in leg extensor muscles. For both of these
sensory inputs there is evidence for parallel pathways and
for the ability to control these pathways during gait dif-
ferentially. Cats with a high decerebration (premammil-
lary cats) can walk spontaneously on a treadmill. Stimu-
lation of the plantar surface of the foot in this preparation
yields large extensor responses during stance, whereas
the same stimuli evoke flexor facilitation during swing
(187, 190). Similar results can be obtained by direct stim-
ulation of the posterior tibial nerve at the ankle (112, 187;
for decerebrate spinal cats injected with L-dopa) and by
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stimulation of skin areas that may not be related primarily
with load detection (218, 219, 223–225).

In principle, passive changes in limb position could
underlie some of this switching between pathways (239,
258, 455; for review, see Ref. 52). However, phase-depen-
dent switching between pathways persists during fictive
locomotion of the motionless (paralyzed) spinal cat,
treated with injections of Nialamide and dopa (6, 474,
475). The flexor EPSP, evoked by cutaneous stimulation,
were usually largest during the rhythmic flexor burst,
whereas the extensor EPSP were largest during extensor
bursts. In general, Schomburg and co-workers (474–476,
478, 480) concluded that such EPSP appeared during the
active phase of the recorded MN, whereas IPSP were
present during the inactive phase. This modulation oc-
curred for stimulus parameters that were similar to those
used in the intact cat (188, 218). Similar results on phase-
dependent modulation of transmission in cutaneous path-
ways have been reported for the forelimb (291). In some
of these studies, the results on single cats are presented.
One should be aware that such results are not always
representative, since for some of the responses there is
large intersubject variability (359, 361).

Furthermore, recent studies have challenged the gen-
eralized occurrence of phase-dependent modulation dur-
ing fictive locomotion. Schmidt et al. (461, 462) found that
phase-dependent modulation was only present in some
MN [e.g., flexor digitorum longus (FDL)] and only to some
types of input (saphenous and plantar nerves). Interest-
ingly, the same authors were able to show that the FDL
EPSP, evoked by the two nerves mentioned above, were
differentially modulated during fictive stepping. The early
components of the SP EPSP were enhanced during the
early flexion phase, whereas those in plantar EPSP were
markedly depressed during flexion (387). A similar pic-
ture of highly differentiated reflex pathways undergoing
quite specific modulatory influences during fictive loco-
motion arises from the study of Labella et al. (339). The
latter authors focused their attention on cutaneous re-
flexes in the different parts of the triceps surae. They
showed that the reflexes to these muscles are generally
largest during the phase of the cycle in which the nerves
to these muscles are most active, but subtle deviations
occur, and there are differences in amplitude of the re-
sponses of the various muscle parts.

A phase-dependent reversal from crossed extension
to crossed flexion has been observed occasionally during
fictive locomotion (spinal paralyzed cats treated with nial-
amide and L-dopa; Ref. 455). However, long stimulus
trains were used, and the latencies of the responses were
correspondingly much longer than those seen in the stud-
ies on the intact cats, where single shocks were used. It
was noted that the reversal was much less constant than
during decerebrate walking. In many cases, only crossed
extension or crossed flexion was obtained. Rossignol et

al. (455) attributed this reduced potency of modulation to
the absence of movement-related feedback during fictive
locomotion.

At least part of the modulation during fictive locomo-
tion seems to occur presynaptically on the afferent termi-
nals (12–15, 180–182, 184, 185, 247–249; for review, see
Ref. 506). Gossard et al. (245, 246, 249), for example,
demonstrated presynaptic modulation of different cuta-
neous and group I afferents during fictive locomotion in
the cat. It is likely that presynaptic inhibition also con-
tributes to position-dependent modulation (35, 53, 454). In
humans, the role of presynaptic inhibition in the phase
and position dependency of various reflexes has been
reviewed by Brooke et al. (52) and by Stein (506).

In the intact cat, the phase-dependent modulation of
ipsi- and contralateral reflexes, as described above, could
be due to supraspinal influences. Cortical influences may
not be very essential, since phase-dependent modulation
of crossed and uncrossed reflexes is present during loco-
motion of high decerebrate cats. Brain stem mechanisms
could play a role to some degree. Drew (178) showed that
microstimulation of the medullary reticular formation in
the intact unanesthetized cat elicits maximal responses in
flexors, not during the periodic locomotor activity but just
before this period (when peripherally induced flexor re-
sponses are at a maximum as well). Nevertheless, the
brain stem can be excluded as the only modulatory source
underlying phase-dependent reflex gating. Forssberg and
co-workers (218, 219, 223–225) showed that phase-depen-
dent modulation of reflexes is present in the chronic
spinal cat, walking on a treadmill.

Finally, it is worth mentioning that some data are
available on humans as well. In intact humans, the phase-
dependent modulation of sensations, cortical evoked po-
tentials (195), and EMG responses in leg muscles after
stimulation of cutaneous afferents has been studied ex-
tensively (196, 197, 533, 543). As in cats, electrical stimu-
lation of skin nerves in humans induces facilitatory EMG
responses in flexors, provided the responses are elicited
near the transition from stance to swing (188, 199, 218,
543).

In patients with complete or almost complete spinal
cord transection, rhythmic locomotor-like contractions
are very rare (79–81, 177, 448), and it is not known
whether phase-dependent modulation persists under such
conditions. In humans, it is thus difficult to demonstrate
whether such phase-dependent modulation is due to cen-
tral or peripheral factors. Because a substantial part of
the modulation of H reflexes persists during passive
movements, there is a growing consensus that muscle
stretch related to movement is an important element in
amplitude modulation of H reflexes during locomotory
movements (for review, see Refs. 52, 506). For cutaneous
reflexes, the contribution of movement-related feedback
has yet to be proven, whereas on the other hand, there is
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evidence for a CPG-related modulation, based on indirect
evidence related to backward locomotion (194). The cen-
tral idea is that, in humans, the backward gait is produced
by the central program for forward walking, but with the
program working in reverse (517) and thus also producing
a reversing of the order of the phase-dependent modula-
tion of reflexes (201).

Furthermore, for the medium latency (P2) cutaneous
reflexes from the foot, it has been argued that a spino-
bulbospinal (491) and/or a transcortical pathway may be
partially involved (402). This is compatible with the ob-
servation that P2 responses have not been shown con-
vincingly to be present in spinal human or cat. The re-
flexes survive only in patients with incomplete spinal cord
injury lesions. Jones and Yang (323) showed that P2 re-
flexes (with a latency of ;75–80 ms) elicited through
stimulation of the posterior tibial nerve (containing large
cutaneous and other afferents from the foot) were
present, but they were abnormally modulated in these
spinal cord injury patients. In particular, in muscles such
as tibialis anterior, there was no longer a phase-depen-
dent reversal in these patients, because they lacked the
suppressive responses normally seen at the end of the
swing phase. The ankle extensor soleus was activated in
reflexes in the swing phase. It was argued that this disor-
dered activation pattern may be one of the causes of the
frequent falls of these spinal cord injury patients. The
abnormal modulation may reflect the contribution of su-
praspinal structures in the phase-dependent reflex
changes (for review, see Ref. 508). Fung et al. (235), Yang
and co-workers (542, 544), and Fung and Barbeau (234)
found that improvement of gait was obtained by restoring
the phase-dependent modulation of H reflexes through
conditioning by cutaneous stimuli.

VIII. INTERLIMB COORDINATION

A. Invertebrates: Coordination in Multipods

It has been possible to manipulate load by adding
weight to the entire animal or to a particular leg. A com-
parison with the unloaded animal demonstrates a change
in the interleg coordination (see below). In the crayfish
(18, 95, 268), it has been demonstrated that, within a given
step cycle, a loaded leg shows a lengthening of its power
stroke duration and not of its return stroke. On the other
hand, Cruse and Müller (141) showed that return stroke
duration is smaller when the vertical load is increased.
This was also the case for the stick insect for small loads
(227, 252). In contrast, Dean (153) reported a prolonga-
tion of swing movement when the stick insect walks
under high loads. Prolongation of power stroke was also
observed in the stick insect (227, 228), but such a prolon-
gation might simply result from the mechanical effect due

to the limited muscle force. Loading the whole animal
shows a strong effect on the ipsilateral and contralateral
coordination. Unloaded, the coordination is much
weaker. In particular with respect to contralateral cou-
pling, it can cover a complete range of values from in
phase to out of phase. In a loaded animal, these phase
values become more concentrated. Dean (153) found a
quantitative influence on interleg phase for ipsilateral
legs, but not for contralateral legs after loading a stick
insect by externally applied force to the treadwheel. In
several investigations, a number of coordinating mecha-
nisms have been described between both ipsilateral and
contralateral legs in the crayfish (3 mechanisms; Refs.
142, 391) and the stick insect (6 mechanisms; for review,
see Ref. 128). Most of these mechanisms are described as
depending on leg position. However, as was mentioned
above, the PEP also depends on load, and therefore, all
the position-dependent mechanisms may also indirectly
be influenced by load. There are also influences that
directly depend on load (coactivating mechanism, Ref.
125; prolongation of power stroke of adjacent rear leg,
Ref. 470). Another one, the forward excitation (149), may
well depend on load receptors of the posterior leg. In the
decapod crustacean, a series of experiments emphasize
the role of the CSD and FCO sensory receptors (91, 134,
330, 493, 353, 354).

It should, however, also be mentioned in this context
that the effects of mechanical coupling should not be
underestimated. If one leg lifts off the ground, the other
legs are under higher load, and the opposite occurs when
a leg finishes swing. Because load changes can have a
direct influence on the local leg reflexes as discussed
above, there is also at least an indirect influence on co-
ordination between legs.

The FCO receptors, which are able to record load,
control the interleg locomotor patterns. As mentioned in
section VIA1, in the crab and in the rock lobster, stimula-
tion of the FCO from one leg inhibits the stance muscle of
that leg (the depressor) and facilitates its swing muscle
(the levator). Moreover, it facilitates the stance muscles
of the ipsilateral neighboring legs. In an in vitro crayfish
preparation, such interleg connections have also been
described (98). In the crab, if a leg (e.g., leg 3) is experi-
mentally lifted from the ground and the animal walks
freely, the two adjacents legs (legs 2 and 4) operate more
or less out of phase, as if they were immediately neigh-
boring legs. In the fixed leg, the depressor muscle is
activated almost continuously. If, under these conditions,
the FCO of the fixed legs are stimulated at the time when
they would normally be activated in the step cycle, the
depressor activation of the two neighboring legs changes
to a pattern compatible with the situation when the fixed
limb was really on the ground (353, 354). In the rock
lobster, analogous interleg relations with “stance sensory
receptor” controls have also been presented (389, 390).
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This means a return to the pattern that these legs would
show under normal conditions.

Increasing power stroke activity in one leg is corre-
lated with a modification of the activation of the other
legs. In the intact rock lobster walking on a treadmill, it is
possible to block a leg during the stance phase, thereby
substantially inhibiting the walking pattern of the other
ipsilateral legs. An increase in the leg 5 remotor activity
by electrical stimulation (stance) inhibits the leg 4 remo-
tor (30, 92, 126, 134). A direct dependence of leg 4 force
on the leg 5 swing has been proven by placing leg 4 on a
force platform while leg 5 continues to step. Leg 4, which
is immobile, exerts cyclical force on this platform. This
force is maximal during leg 5 swing and minimal during
leg 5 stance, as expected for alternating gait (134). Similar
results have been described for the stick insect (29, 146).

Another experimental situation involving load has
been the possibility of studying the effects of autotomiz-
ing a leg (253). On the basis of the results when locomo-
tion is studied after amputation of one leg (changes in leg
coordinations and in durations of return stroke and power
stroke in the remaining stump), it can be assumed that
load is a critical sensory influence (17, 91).

When all legs are autotomized, it is possible to see an
erratic in-phase pattern involving buccal appendages
(maxilliped), which are normally not involved in locomo-
tion. These movements are in phase with the stumps of
the legs. A similar pattern is observed in several decapod
crustaceans when an animal is at rest provided the animal
is supporting its weight by the back legs. In this case, the
front legs are elevated above the ground. An in-phase
pattern is observed with a succession of backward or
forward movements of the front legs. This waving pattern
(91, 409) involves only the first leg segment.

In the in vitro preparation of the thorax of the cray-
fish, in which all leg sensory afferent activity is sup-
pressed, it was demonstrated that the fictive locomotor
pattern, recorded from motor nerves of different thoracic
ganglia, is more or less in phase (493, 496). In this case,
the pattern is entirely of central origin. Nevertheless, it
can be shown that some types of receptors may also be
involved in maintaining in-phase patterns. For example,
rhythmic activation of the TCMRO, a neuromuscular
structure at the base of the leg, is able to stabilize the
in-phase pattern and to entrain the central rhythm, accel-
erating or decreasing it.

Cruse (124) and Cruse and Graham (139) built a
model where the influence of load changes of step phase
duration in both the same leg and in neighboring legs.

In particular, return stroke duration is directly con-
trolled by the load. The model predicts that, for small
loads, return stroke duration decreases with increasing
speed, and for high loads, return stroke duration is short
and constant.

The model is in agreement with the following find-

ings. In a rock lobster, successive autotomy induces a
pattern in the remaining stumps that is in phase with the
front legs. The intact legs are always out of phase with the
neighboring legs, independent of the number of autoto-
mized legs. All the ipsilateral stumps move in phase with
each other (91, 94). Similarly, when in the stick insect the
middle leg was autotomized, the coxae moved in phase
with the front legs (527).

B. Vertebrates: Interlimb Coordination

in Cats and Humans/Effects of Elimination

of Load Feedback

The studies on cat interlimb coordination have been
summarized by Rossignol et al. (458) and by Cruse and
Warnecke (150), while the effects of deafferentation have
been reviewed as well (457). In agreement with the ar-
thropod studies, it has been found that interlimb coordi-
nation becomes less precise following deafferentation
(531). Such disturbance in the coupling between various
limbs is especially prominent in the chronic spinal cat
during air-stepping (241). In the context of the present
review, it is of interest that the deafferentation effects are
especially prominent during the load-bearing phase of the
affected limb (531). Initially, the deafferented limb is over-
extended and dragged along during stance. In other cases,
the stance phase is shortened dramatically as the animals
fail to extend the limbs fully (531). Furthermore, the
duration of the stance phase is no longer adequately
adapted to the speed of the animal.

Little is known about the role of load receptors with
respect to the neural substrate of the coordination be-
tween fore- and hindlimbs. In a recent review, English
(211) describes the evidence for the involvement of two
systems. First, long propriospinal cells that link lumbar
and thoracic portions of the spinal cord have often been
implicated (4, 500). Second, neurons of the ventral spino-
cerebellar tract may be involved, since they carry infor-
mation about the timing of step cycles from more than
one limb.

The coordination between fore- and hindlimbs during
walking has been studied by several authors in the cat
(150, 210, 212, 275, 382, 532). The main conclusions can be
summarized as follows. 1) Basically, there are two types
of coordinating influences, namely, influences between
ipsilateral neighboring legs and influences between con-
tralateral neighboring legs. No evidence exists for direct
connections between diagonally neighboring legs, even if
diagonal coordination is stronger than ipsi- and contralat-
eral coordination. Such an effect could be explained in
the way that diagonal coordination may be supported by
two ipsi-contralateral pathways, and this two-way influ-
ence becomes stronger than the two single pathways. 2)
In contrast to the arthropod species investigated (see Ref.
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128), the contralateral coupling is stronger than the ipsi-
lateral coupling in the cat.

Reflexes could be elicited from fore- to hindlimbs, or
vice versa, yielding diagonal flexor and extensor patterns
that were very reminiscent of the patterns of muscle
activations used by these animals during locomotion (see
Ref. 116 for review). It has been suggested initially that
some reflex pathways from fore- to hindlimb could under-
lie some of the coupling seen during locomotion (381).
However, the variability among the different interlimb
patterns used is so large that it is unlikely that an associ-
ation with simple neural circuitry can be made (210, 212,
532). One striking feature is the existence of a fast pro-
priospinal inhibitory pathway from forelimb afferents to
MN of hindlimb FDL (477, 478).

Hence, in summary, reflexes between fore- and hind-
limb in the cat are present and often highly specific (FDL).
They may involve load compensatory reactions, but they
can, at present, not be linked to a specific form of inter-
limb coordination. The modulation of these reflexes dur-
ing walking obeys the same rules as observed for crossed
reflexes. Variations in the amplitudes of the reflexes de-
pend primarily on the step cycle of the limb in which the
reflexes are observed. As for ipsilateral and crossed (con-
tralateral) reflexes, there is evidence that spinal motor
centers underlie the observed phase-dependent modula-
tion.

To study within which limits a cat can maintain sta-
ble interlimb coordination, some authors have used loco-
motion on split belts, moving at different speeds, thereby
imitating walking in a circle (150, 222, 275, 338). Under
such conditions, chronic spinal cats can maintain alter-
nating stepping even for two- to threefold differences in
belt speed. This is achieved mainly by prolonging the
flexion or first extension phases of the limb walking on
the “fast” belt and a shortening of the swing phase of the
limb walking on the “slow” belt. One “rule” emerging from
these studies was that bilateral overlap between different
phases was allowed during alternating gait except for the
E1 period (first extension phase before touchdown). Si-
multaneous bilateral occurrences of E1 phases were
avoided, even if it meant that the limb had to “wait” a
substantial period of time at the end of the flexion phase
(see also Ref. 239 for this effect). On the other hand,
Cruse and Warnecke (150) investigated free walking cats,
and the results indicate that the start of swing is inhibited
as long as the contralateral leg performs a swing. As
mentioned above, similar effects were found in the stick
insect (226, 228) when the legs of one side walk with
twice the step frequency of the other side.

Whatever the building blocks of the neural substrate
for interlimb coordination, it appears that the coupling
between these blocks depends on an appropriate amount
of movement-induced afferent input, some of it related to
load. Grillner and Zangger (267) found that interlimb co-

ordination during hindlimb walking deteriorated after
deafferentation in the mesencephalic cat. Similarly, Giu-
liani and Smith (241) described that coupling between
hindleg movements during unloaded locomotion (air step-
ping) was weaker after deafferentation of a hindlimb of a
chronic spinal cat. They found that, during the majority of
locomotor bouts, the bilateral stepping was characterized
by irregular phasing with the intact hindlimb stepping at a
faster frequency than the deafferented leg. Evidence for
spinal mechanisms involved in the coordination of move-
ments of the different limbs during locomotion of the cat
is provided by the observation that such coordinated
movements persist in the high spinal cat injected with
dopa and placed on a treadmill (383). When movement
feedback is absent, however, e.g., during fictive locomo-
tion, then the coordination is generally more variable than
when movements are allowed. The most common type of
interlimb coordination is the alternation of activity in the
limbs of one girdle, but occasionally a bilateral synchrony
of flexion and extension was observed (384). The coordi-
nation of activity in fore- and hindlimbs is even more
variable (89, 405, 522). There is also some evidence for
diagonal coupling between forelimbs and hindlimbs (405).
However, it was shown by a model calculation (392) that
it is difficult to conclude the existence of neuronal diag-
onal pathways on the basis of measured coordination
strengths, in the case that several parallel pathways could
exist.

In conclusion, the results of various manipulations
(e.g., split belt) have shown that the coordination be-
tween movements of the various limbs during walking is
quite flexible. The spinal cord is able to produce much of
this coordination as well as its flexibility. Load afferent
feedback may be essential in strengthening the coordina-
tion.

In humans, compensatory reflexes due to unloading
of one leg result in bilateral responses, provided the con-
tralateral leg is performing a supportive role (38). Dietz et
al. (164, 172) studied perturbations applied during stance
on a treadmill with split belts. Bilateral displacements
induced responses that were largest when both belts
moved in the same direction and not in the opposite
direction. Displacement in the opposite direction causes
the body’s center of mass to fall between the legs, and
therefore, the compensatory responses do not have to be
as large. This was shown to be due to automatic cocon-
traction of the homologous muscles of the respective
contralateral leg. This leads to a lower level of leg muscle
activity when both legs are displaced in the same direc-
tion and to a linear subtraction when they were displaced
in opposite directions. On the basis of this and other
studies, it was argued that load receptors in ankle exten-
sors must be crucial for the maintenance of body posture.
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IX. GENERAL CONCLUSIONS

Most movements are made against some type of re-
sistance or load, whether it is our hand grasping an egg or
our foot moving over ground during gait. Understanding
how load is sensed by receptors and how this sensory
information is used to guide these movements is a key
issue in motor control studies. In recent years, the interest
in this question is widening as there are more and more
motor tasks that have to be performed with the help of
man-made devices such as robots and prostheses. Just at
the point where there is a broad need to understand
load-compensating mechanisms, several new insights
have emerged that have given an extra impetus to this
field. These insights have mostly evolved from compara-
tive studies, since it has been realized that basic princi-
ples concerning load regulation can be found in a wide
variety of animals, both vertebrate and invertebrate. Ma-
jor recent advances include the following.

1) Automated movements such as gait are regulated
through feedback from load receptors onto central cir-
cuits involved in the generation of rhythmic locomotor
output. Control of gravitational load is an essential ele-
ment for the control of locomotion. Activation of load-
detecting receptors is crucial for the control of the inten-
sity and duration of the period during which a given limb
acts against gravitational load (stance phase) in the step
cycle. In invertebrates, it has long been known that this is
achieved through feedback onto the central networks
involved in the generation of the locomotor CPG. In the
last 20 years, it has become clear that a similar principle
applies to the control of locomotion in vertebrates such as
the cat. In this animal, indirect evidence is accumulating
that during the stance phase, afferent activity from vari-
ous load detectors can activate the part of the CPG that
generates extensor activity in this part of the cycle. This
constitutes an example of reinforcing force feedback. At
the same time, there is an inhibition of the CPG part
generating flexion. The functional role of this arrange-
ment is obvious. As long as the limb is loaded, activity in
antigravity muscles should be promoted while the onset
of the next flexion should be delayed.

2) Load-compensating reflexes are highly flexible,
and their gain can be adapted to the task or to the phase
of the ongoing movement. A next major finding was that
reinforcing force feedback is not a constant feature but is
task dependent. It appears only in situations where it is
appropriate, such as during gait. In other conditions, such
as in the immobile resting animal, such pathways are
closed, and other reflexes may be more apparent. This
type of switching between pathways has been observed in
some invertebrates, but more recently, it was also shown
to occur in cats. Traditionally in this animal, all experi-
ments were done on immobile resting preparations, and
this explains why only force-reducing pathways were re-

vealed (autogenic inhibition from Ib afferents of GTO
from leg extensors). Only through experiments under
conditions related to locomotion has it become apparent
that alternative pathways exist.

3) Load is a complex parameter that is recorded by
very different types of receptor, although some are more
directly involved than others. Feedback about load is not
only derived from specific load receptors but also from
other types of receptors that previously were thought to
have other functions. In the CNS of many species, a
convergence is found between specific and nonspecific
load receptors. A redefinition of load receptors is re-
quired.

In invertebrates, most attention has been given to
position and movement detectors (such as the hair plates,
MRO, or the CO), but more recently, the cuticular recep-
tors, such as the CS, which act as typical load receptors
have been under detailed investigation. Similarly, in mam-
mals, the question of load receptors is often reduced to a
discussion of a single type of receptor, namely, the GTO
of extensors. However, when a limb is loaded during
stance, a wide variety of receptors are activated, including
cutaneous receptors from the foot and spindles from
stretched muscles. Input from these various sources
(through Ia, Ib, and cutaneous afferents) is combined in
reflex pathways at the spinal cord level, suggesting that a
common message about limb loading has a high priority.
One should add, however, that convergence in some path-
ways does not necessarily rule out modality specificity in
other pathways.

4) Load feedback is intensity dependent. At low lev-
els, the feedback may reinforce load-compensating ac-
tions, but at high levels, the actions are inversed, thereby
protecting the system from overload.

Even within a given task it is not an advantage to
have a reflex that is completely stereotyped. For example,
load-resisting feedback is appropriate at physiological
levels of load but not when load is excessive. In the latter
case, the polarity of the feedback should change to pro-
tect the animal or subject from overloading. For example,
in the crab and in other invertebrates, such switching
does indeed occur. In cats, the outcome of contraction-
induced reflexes was shown to depend on the ongoing
force level. In humans, load-resisting reflexes through
afferents from periodontal receptors occur at low levels
of loading while, instead, jaw closing is inhibited at high
load levels.

5) Load-compensating reactions not only involve sev-
eral types of nervous feedback but also rely on the bio-
mechanical arrangement of the biological structures. Re-
sistance to load is due to a mixture of elements: passive
resistance (e.g., passive muscle stiffness), feed-forward
activation, and load-dependent feedback. The relative im-
portance of each of these elements has been studied in a
variety of tasks.
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A hot topic in the debate on load compensation is
related to the use of feed-forward versus feedback types
of control, both for biological and for artificial systems. It
is clear that in fast movements the role of anticipation
prevails, but it is less clear what happens during move-
ments of moderate speed.

6) Load plays a crucial role in shaping patterned
motor output. Locomotor patterns (walking, swimming)
depend on the medium in which the movements have to
occur. This could indicate that these various forms of
locomotion depend on the same neural substrate (CPG)
but that the different patterns (walking, swimming) de-
pend on the sensory context, in particular the afferent
input related to load.

7) Proportional systems using positive feedback are
usually neglected by engineers because such systems may
show problems regarding stability unless those are pre-
vented by saturation characteristics. However, an increas-
ing number of examples of biological systems appear to
use proportional positive feedback for position or force
control. Conditions could be determined under which
these systems are stable. Furthermore, positive feedback
systems could be shown to solve different control prob-
lems by exploiting the physical properties of the system to
be controlled. Some hybrid solutions, i.e., mixtures be-
tween position, force, or velocity feedback using positive
or negative sign with interesting properties have been
proposed. There is, however, a number of possible com-
binations that still deserve experimental and theoretical
investigations.
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27. BÄSSLER, U. Sensory control of leg movement in the stick insect
Carausius morosus. Biol. Cybern. 25: 61–72, 1977.
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31. BÄSSLER, U. Afferent control of walking movements in the stick

insect Cuniculina impigra. II. Reflex reversal and the release of
the swing phase in the restrained foreleg. J. Comp. Physiol. A Sens.

Neural Behav. Physiol. 158: 351–362, 1986.
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propagée des récepteurs à l’étirement de la patte métathoracique
du criquet, Schistocerca gregaria. J. Insect Physiol. 15: 1449–1470,
1969.

110. COLLINS, D. F., AND A. PROCHAZKA. Movement illusions evoked
by ensemble cutaneous input from the dorsum of the human hand.
J. Physiol. (Lond.) 496: 857–871, 1996.

111. CONWAY, B. A., H. HULTBORN, AND O. KIEHN. Proprioceptive
input resets central locomotor rhytm in the spinal cat. Exp. Brain

Res. 68: 643–656, 1987.
112. CONWAY, B. A., D. T. SCOTT, J. S. RIDDELL, AND M. R. HADIAN.

Effects of plantar nerve stimulation on the transmission of late
flexion reflexes in the decerebrate spinal cat (Abstract). J. Physiol.

(Lond.) 479: 145P, 1994.
113. COOK, T., AND B. COZZENS. Human solutions for locomotion. III.

The initiation of gait. In: Neural Control of Locomotion, edited by
R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart. New York:
Plenum, 1976, p. 65–76.

114. COPPIN, C. M. L., J. J. B. JACK, AND C. R. MACLENNAN. A method
for selective activation of tendon organ afferent fibers from cat
soleus muscle. J. Physiol. (Lond.) 219: 18–20, 1970.

115. CRAGO, P. E., J. C. HOUK, AND W. Z. RYMER. Sampling of total
muscle force by tendon organs. J. Neurophysiol. 47: 1069–1083,
1982.

116. CREED, R. S., D. DENNY-BROWN, J. C. ECCEES, E. G. T. LID-
DELL, AND C. S. SHERRINGTON. Reflex Activity of the Spinal

Cord. London: Oxford Univ. Press, 1932.
117. CRENNA, P., AND C. FRIGO. Excitability of the soleus H-reflex arc

during walking and stepping in man. Exp. Brain Res. 66: 49–60,
1987.

118. CRENNA, P., AND C. FRIGO. A motor programme for the initiation
of forward-oriented movements in humans. J. Physiol. (Lond.)

437: 635–653, 1991.
119. CROMMERT H. W. A. A., M. VAN DE FAIST, W. BERGER, AND J.

January 2000 LOAD-REGULATING MECHANISMS IN GAIT AND POSTURE 123



DUYSENS. Biceps femoris tendon jerk reflexes are enhanced at the
end of the swing phase. Brain Res. 734: 341–344, 1996.

120. CRUSE, H. The functions of the legs in the free walking stick
insect, Carausius morosus. J. Comp. Physiol. 112: 235–262, 1976.

121. CRUSE, H. The control of the body position in the stick insect,
Carausius morosus, when walking over uneven surfaces. Biol.

Cybern. 24: 25–33, 1976.
122. CRUSE, H. The control of the anterior extreme position of the

hindleg of a walking insect. Physiol. Entomol. 4: 121–124, 1979.
123. CRUSE, H. Is the position of the femur-tibia joint under feedback

control in the walking stick insect? I. Force measurements. J. Exp.

Biol. 92: 87–95, 1981.
124. CRUSE, H. The influence of load and leg amputation upon coordi-

nation in walking crustaceans: a model calculation. Biol. Cybern.

49: 119–125, 1983.
125. CRUSE, H. Coactivating influences between neighbouring legs in

walking insects. J. Exp. Biol. 114: 413–519, 1985.
126. CRUSE, H. Which parameters control the leg movement of a walk-

ing insect? Velocity control during the stance phase. J. Exp. Biol.

116: 343–355, 1985.
127. CRUSE, H. Which parameters control the leg movement of a walk-

ing insect? II. The start of the swing phase. J. Exp. Biol. 116:
357–362, 1985.

128. CRUSE, H. What mechanisms coordinate leg movement in walking
arthropods? Trends Neurosci. 13: 15–21, 1990.

129. CRUSE, H. Coordination of leg movement in walking animals. In:
Simulation of Adaptive Behavior. From Animals to Animats,

edited by J. A. Meyer and S. Wilson. Cambridge, MA: MIT Press,
1991, p. 105–119.

130. CRUSE, H. Neural Networks as Cybernetic Systems. Stuttgart,
Germany: Thieme, 1996.

131. CRUSE, H., AND C. BARTLING. Movement of joint angles in the legs
of a walking insect, Carausius morosus. J. Insect Physiol. 41:
761–771, 1995.

132. CRUSE, H., C. BARTLING, G. CYMBALYUK, J. DEAN, AND M.
DREIFERT. A modular artificial neural net for controlling a six-
legged walking system. Biol. Cybern. 72: 421–430, 1995.

133. CRUSE, H., C. BARTLING, J. DEAN, T. KINDERMANN, J.
SCHMITZ, M. SCHUMM, AND H. WAGNER. Coordination in a six-
legged walking system. Simple solutions to complex problems by
exploitation of physical properties. In: From Animals to Animats.

4: Proceedings of the Fourth International Conference on Simu-

lation of Adaptive Behavior, edited by P. Maes, M. J. Mataric, J.-A.
Meyer, J. Pollack, and S. W. Wilson. Cambridge, MA: MIT Press,
1996, p. 84–93.

134. CRUSE, H., F. CLARAC, AND C. CHASSERAT. The control of walk-
ing movements in the leg of the Rock lobster. Biol. Cybern. 47:
87–94, 1983.

135. CRUSE, H., K. DAUTENHAHN, AND H. SCHREINER. Coactivation
of leg reflexes in the stick insect. Biol. Cybern. 67: 369–375, 1992.

136. CRUSE, H., J. DEAN, H. HEUER, AND R. A. SCHMIDT. Utilisation of
sensory information for motor control. In: Relationships Between

Perception and Action, edited by O. Neumann and W. Prinz. Berlin:
Springer, 1990, p. 43–79.

137. CRUSE, H., J. DEAN, AND M. SUILMANN. The contributions of
diverse sense organs to the control of leg movement by a walking
insect. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 154:
695–705, 1984.

138. CRUSE, H., AND S. EPSTEIN. Peripheral influences on the move-
ment of the leg in a walking insect Carausius morosus. J. Exp.

Biol. 101: 161–170, 1982.
139. CRUSE, H., AND D. GRAHAM. Models for the analysis of walking in

Arthropods. In: Coordination of Motor Behaviour, edited by
B. M. H. Bush and F. Clarac. Cambridge, UK: Cambridge Univ.
Press, 1985, p. 283–316.

140. CRUSE, H., AND A. KNAUTH. Coupling mechanisms between the
contralateral legs of a walking insect (Carausius morosus). J. Exp.

Biol. 114: 199–213, 1989.
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390. MÜLLER, U., AND F. CLARAC. Dactyl sensory influences on rock
lobster locomotion. II. Role in intereleg coordination. J. Exp. Biol.

148: 113–128, 1990.
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521. TÜRKER, K. S., P. BRODIN, AND S. MILES. Reflex responses of
motor units in human masseter muscle to mechanical stimulation
of a tooth. Exp. Brain Res. 100: 307–315, 1994.

522. VIALA, D., AND C. VIDAL. Evidence for distinct spinal locomotion
generators supplying respectively fore- and hindlimbs in the rabbit.
Brain Res. 155: 182–186, 1978.

523. VINAY, L., J.-Y. BARTHE, AND S. GRILLNER. Central modulation of

132 DUYSENS, CLARAC, AND CRUSE Volume 80



stretch receptor neurons during fictive locomotion in Lamprey.
J. Neurophysiol. 76: 1224–1235, 1996.

524. WALMSLEY, B., J. A. HODGSON, AND R. E. BURKE. Forces pro-
duced by medial gastrocnemius and soleus muscles during loco-
motion in freely moving cats. J. Neurophysiol. 41: 1203–1216, 1978.

525. WATT, D. G. D., E. K. STAUFFER, A. TAYLOR, R. M. REINKING,
AND G. STUART. Analysis of muscle receptor connections by spike-
triggered averaging. A spindle primary and tendon organ afferents.
J. Neurophysiol. 39: 1375–1392, 1976.

526. WEILAND, G., AND U. T. KOCH. Sensory feedback during active
movements of stick insects. J. Exp. Biol. 133: 137–156, 1987.

527. WENDLER, G. Laufen und Stehen der Stabheuschrecke Carausius

morosus: Sinnesborstenfelder in den Beingelenken als Glieder von
Regelkreisen. Z. Vergl. Physiol. 48: 198–250, 1964.

528. WENDLER, G. The influence of proprioceptive feedback on locust
flight co-ordination. J. Comp. Physiol. 88: 173–200, 1974.

529. WENDLER, G., AND H. SCHARSTEIN. The orientation of grain
weevils (Sitophilus granarius): influence of spontaneous turning
tendencies and of gravitational stimuli. J. Comp. Physiol. 159:
377–389, 1986.

530. WENDLER, G., H. TEUBER, AND J. P. JANDER. Walking, swimming
and intermediate locomotion in Nepa rubra. In: Insect Locomotion,

edited by M. Gewecke and G. Wendler. Berlin: Parey, 1985, p.
103–110.

531. WETZEL, M. C., A. E. ATWATER, J. V. WAIT, AND D. G. STUART.
Neural implications of different profiles between treadmill and
overground locomotion timings in cats. J. Neurophysiol. 38: 492–
501, 1976.

532. WETZEL, M. C., AND D. G. STUART. Ensemble characteristics of cat
locomotion and its neural control. Prog. Neurobiol. 7: 1–98, 1976.

533. WEZEL, B. M. H. VAN, F. A. M. OTTENHOFF, AND J. DUYSENS.
Dynamic control of location-specific information in tactile cutane-
ous reflexes from the foot during human walking. J. Neurosci. 17:
3804–3814, 1997.

534. WHELAN, P. Control of locomotion in the decerebrate cat. Prog.

Neurobiol. 49: 481–515, 1996.
535. WHELAN, P. J., G. W. HIEBERT, AND K. G. PEARSON. Stimulation

of the group I extensor afferents prolongs the stance phase in
walking cats. Exp. Brain Res. 103: 20–30, 1995.

536. WHELAN, P. J., G. W. HIEBERT, AND K. G. PEARSON. Plasticity of
the extensor group I pathway controlling the transition from stance
to swing in the cat. J. Neurophysiol. 74: 2782–2787, 1995.

537. WHELAN, P. J., AND K. G. PEARSON. Comparison of the effects of
stimulating extensor group I afferents on cycle period during walk-
ing in conscious and decerebrate cats. Exp. Brain Res. 117: 444–
452, 1997.

538. WILSON, D. M., AND J. L. LARIMER. The catch property of ordinary
muscle. Proc. Natl. Acad. Sci. USA 61: 909–916, 1968.

539. WOLF, H. Activity patterns of inhibitory motoneurones and their
impact on leg movement in tethered walking locusts. J. Exp. Biol.

152: 281–304, 1990.
540. YAGER, J. G. The Electromyogram as a Predictor of Muscle Me-

chanical Response in Locomotion (PhD dissertation). Memphis:
Univ. of Tennessee Medical Units, 1972.

541. YANAGAWA, S., M. SHINDO, AND S.-I. NAKAGAWA. Increase in Ib
inhibition by antagonistic voluntary contraction in man. J. Physiol.

(Lond.) 440: 311–323, 1990.

542. YANG, J. F., J. FUNG, M. EDAMURA, R. BLUNT, R. B. STEIN, AND

H. BARBEAU. H-reflex modulation during walking in spastic pa-
retic subjects. Can. J. Neurol. Sci. 18: 443–452, 1991.

543. YANG, J. F., AND R. B. STEIN. Phase-dependent reflex reversal in
human leg muscles during walking. J. Neurophysiol. 63: 1109–
1117, 1990.

544. YANG, J. F., R. B. STEIN, AND K. B. JAMES. Contribution of
peripheral afferents to the activation of the soleus muscle during
walking in humans. Exp. Brain Res. 87: 679–687, 1991.

545. YANG, J. F., M. J. STEPHENS, AND R. VISHRAM. Transient distur-
bances to one limb produce coordinated, bilateral responses during
infant stepping. J. Neurophysiol. 79: 2329–2337, 1998.

546. YANG, J. F., AND P. J. WHELAN. Neural mechanisms that contribute
to cyclical modulation of the soleus H-reflex in walking in humans.
Exp. Brain Res. 95: 547–556, 1993.

547. YOUNG, R. P., S. H. SCOTT, AND G. E. LOEB. An intrinsic mecha-
nism to stabilize posture-joint-angle-dependent moment arms of
the feline ankle muscles. Neurosci. Lett. 145: 137–140, 1992.

548. YOX, D. P., R. A. DI CAPRIO, AND C. R. FOURTNER. Resting
tension and posture in Arthropods. J. Exp. Biol. 96: 421–425, 1982.

549. ZAJAC, F. F., AND J. L. YOUNG. Discharge properties of hindlimb
motoneurons in decerebrate cats during locomotion induced by
mesencephalic stimulation. J. Neurophysiol. 43: 1221–1235, 1980.

550. ZANGGER, P. Fictive locomotion in curarized high spinal cats
elicited by 4-aminopyridine and Dopa (Abstract). Experientia 34:
904, 1978.

551. ZILL, S. N. Proprioceptive feedback and the control of cockroach
walking. In: Feedback and Motor Control in Invertebrates and

Vertebrates, edited by W. J. P. Barnes and M. H. Gladden. London:
Croom Helm, 1985, p. 187–208.

552. ZILL, S. N. Mechanisms of load compensation in insects: swaying
and stepping strategies in posture and locomotion. In: Biological

Neural Networks in Invertebrate Neuroethology and Robotics, ed-
ited by R. Beer, R. Ritzmann, and T. McKenna. San Diego, CA:
Academic, 1993, p. 43–68.

553. ZILL, S. N., AND D. T. MORAN. The exoskeleton and insect pro-
prioception. I. Responses of tibial campaniform sensilla to external
and muscle-generated forces in the American cockroach, Peripla-

neta americana. J. Exp. Biol. 91: 1–24, 1981.
554. ZILL, S. N., AND D. T. MORAN. The exoskeleton and insect pro-

prioception. III. Activity of tibial campaniform sensilla during walk-
ing in the American cockroach, Periplaneta americana. J. Exp.

Biol. 94: 57–75, 1981.
555. ZILL, S. N., D. T. MORAN, AND F. G. VARELA. The exoskeleton and

insect proprioception. II. Reflex effects of tibial campaniform sen-
silla in the American cockroach, Periplaneta americana. J. Exp.

Biol. 94: 43–55, 1981.
556. ZILL, S. N., AND E.-A. SEYFARTH. Exoskeletal sensors for walking.

Sci. Am. 70–74, 1996.
557. ZYTNICKI, D., J. LAFLEUR, G. HORCHOLLE-BOSSAVIT, AND L.
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