研究简报

绿斑病藻寄生对夏橙叶片光合作用特性的影响

王大平1,2,曾明1,朱钧1,李道高1

¹西南大学园艺园林学院, 北碚 400716; ²重庆文理学院生命科学系, 永川 402168 收稿日期 2005-10-8 修回日期 2006-3-20 网络版发布日期 接受日期

摘要 以盆栽的2年生奥灵达夏橙为试材,研究了绿斑病藻寄生对夏橙叶片光合作用特性的影响.结果表明,轻度病叶对叶绿素总量(Chl a+b)、类胡萝卜素含量(Car)、净光合速率(P_n)、胞间 CO_2 浓度(C_i)、原初光能转换效率(F_i / F_m)、光合电子传递量子效率(Φ PS II)和光化学猝灭系数(Φ P)无显著影响;中度病叶和重度病叶的Chla+b、Car、 Φ 0、 Φ 1、 Φ 2、 Φ 3、 Φ 4、 Φ 5、 Φ 8 II 和 Φ 9、 Φ 9、 Φ 9 II 和 Φ 9、 Φ 9 II 和 Φ 9、 Φ 9 II 和 Φ 9、 Φ 9、 Φ 9 II 和 Φ 9、 Φ 9、 Φ 9、 Φ 9、 Φ 9、 Φ 9、 Φ 9 II 和 Φ 9。 Φ 9、 Φ 9 II 和 Φ 9。 Φ 9、 Φ 9、 Φ 9、 Φ 9 II 和 Φ 9。 Φ 9 II 和 Φ 9 Φ 9 II 和 Φ 9 II

关键词 <u>奥灵达夏橙</u> <u>虚幻球藻</u> <u>光合色素</u> <u>光合作用</u> <u>叶绿素荧光</u> 分类号

Effects of *Apatococcus lobatus* parasitization on leaf photosynthesis characteristics of orange (*Citrus* cv. Olinda)

WANG Daping^{1, 2}, ZENG Ming¹, ZHU Jun¹, LI Daogao¹

¹College of Horticulture and Landscape, Southwest University, Beibei 400716, China; ²Department of Life Science, Chongqing University of Arts and Sciences, Yongchuan 402168, China

Abstract

With 2-year pot-grown grafted *Citrus* cv. Olinda as test material, this paper s tudied the effects of *Apatococcus lobatus* parasitization on its leaf photosynthesis characteristics. No significant differences were observed between slightly affected and control leaves in their total chlorophyll (Chl a+b) and carotenoid (Car) contents, net photosynthetic rate (P_n) , intercellular CO_2 concentration (C_i) , primary maximum photochemical efficiency of PS

II (F_{ij}/F_{m}) , quantum efficiency of noncyclic electron transport of PS II $(\Phi PS II)$, and photochemical quenching (qP), but for medium and severely affected leaves, their Chla+b, Car, $P_{ni}F_{ij}/F_{mi}$ ΦPS II and qP decreased by 23.85%, 26.49%, 43.3%, 4.5%, 35.1% and 22.5%, and 37.61%, 44.04%, 64.5%, 8.6%, 63.6% and 40.1%, respectively, while C_{ij} increased, with significant differences to the control. It could be concluded that the massive parasitization of A. lobatus caused a stress to orange plant, and non-stomatal limitation was the dominating factor of P_{ij} reduction.

Key words <u>Citrus cv. Olinda</u> <u>Apatococcus lobatus</u> <u>Photosynthesis</u> <u>Chlorophyll fluorescence parameters</u>

DOI:

扩展功能

本文信息

- ▶ Supporting info
- ▶ **PDF**(334KB)
- ▶[HTML全文](0KB)
- **▶参考文献**

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶复制索引
- ▶ Email Alert
- ▶文章反馈
- ▶浏览反馈信息

相关信息

▶ <u>本刊中 包含"奥灵达夏橙"的</u> 相关文章

▶本文作者相关文章

- · <u>王大平</u>
- .
- · <u>曾明</u>
- · 朱钧
- 李道高