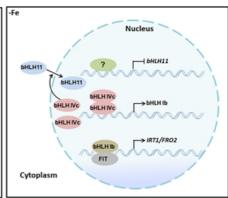
2022年6月7日 星期二

您当前的位置: 首页 > 新闻动态 > 科研动态

植物如何避免铁毒害

时间: 2021-11-24 来源: 科技外事处 浏览次数: 作者: 梁岗、李扬 🔓 打印 字体: 大中小【关闭】


铁是植物生长发育所必需的微量元素。参与光合作用、呼吸作用,及细胞内许多生理生化反应过程。铁缺乏是限制植物生长发育的重要因素之一,但过量的铁摄入则会导致活性氧迸发引起铁中毒。因此,植物必需严格控制铁摄入以维持体内铁稳态。缺铁时,植物通过bHLH IVc家族成员(bHLH34,bHLH104,bHLH105,bHLH115)激活下游转录因子FIT和bHLH Ib(bHLH38,bHLH39,bHLH100,bHLH101)的表达,后者形成蛋白复合物促进铁吸收基因如IRTI和FRO2的表达,从而促进铁吸收。铁充足或过量时,植物能抑制FIT和bHLH Ib转录因子的表达,从而阻止铁过量摄入以避免遭受铁毒害。尽管如此、铁充足情况下FIT和bHLH Ib调控模块是如何被关闭的一直不甚清楚。


近日,版纳植物园梁岗研究组在Plant Physiology杂志上在线发表了题为"bHLH11 inhibits bHLH IVc proteins by recruiting the TOPLESS/TOPLESS-RELATED corepressors"的研究论文,报道了转录因子bHLH11通过招募共转录抑制因子TPL/TPRs抑制bHLH IVc蛋白对bHLH Ib的转录激活,从而阻止铁吸收。

该研究发现bHLH11的RNA水平和蛋白水平都随着铁浓度的升高而增加。进一步研究发现bhlh11突变体中铁吸收基因的表达增加且铁过量积累;而bHLH11过表达植株中铁吸收基因显著下调并表现出缺铁症状。亚细胞定位分析显示bHLH11在细胞质和细胞核中均有分布,而bHLH1Vc可以促进bHLH11蛋白在细胞核中累积。瞬时表达实验发现,bHLH11能有效抑制bHLH1Vc蛋白对其bHLH1b基因的激活。bHLH11蛋白的两个EAR结构域可以招募TPL/TPRs共转录抑制因子。突变EAR结构域使得bHLH11不再与TPL/TPRs互作,继而失去对bHLH1Vc蛋白的抑制功能。

基于以上研究结果,该研究提出了bHLH11的工作模型。缺铁条件下,bHLH1Vc蛋白激活下游转录因子FIT和 bHLH1b,进而促进铁吸收基因如IRT1和FRO2的表达以增加铁吸收。随着植物体内铁的增多,bHLH11蛋白也不断积累,并在bHLH1Vc蛋白的帮助下进入细胞核,通过招募转录抑制因子TPL/TPR从而抑制bHLH1Vc蛋白对下游铁吸收基因的激活,以减少植物对铁的吸收。

版纳植物园梁岗研究员为该论文的通讯作者,团队成员李扬博士和雷日华博士为共同第一作者。该研究得到了国家自然科学基金和云南省基础研究计划的支持。

bHLH11维持铁稳态的工作模型

科研成果

园林园艺

科学传播

研究队伍

研究生站

机构设置

国际交流

图书情报

数据资源

信息公开

蔡希陶诞辰110周年

西园概况

西园介绍 西园历史 领导集体 历任领导

统计数据 学术委员会

党委和纪委 学位委员会

西园风采

科研部门

热带森林生态学重点实验室 热带植物资源可持续利用重点 实验室 综合保护中心

研究团组

支撑系统

公共技术服务中心 标本馆

种子库

西双版纳生态站

哀牢山生态站

元江干热河谷生态站

管理系统

综合办公室 科技外事处 人事教育处 财务处 条件保障与后 昆明分部办公 勤处 室

业务机构

园林园艺中心 旅游管理部 环境教育中心

学术出版物

《雨林故事》电子杂志 版纳植物园年报

院地合作

科技扶贫 合作交流动态 院地合作项目

文化

文化活动 形象标识

信息搜索

(多个关键字请用"空格"格开)

形象标识

版权所有Copyright © 2002-2020 中国科学院西双版纳热带植物园【滇ICP备13004273号-1】 移动版

