Sciences of Limnology and Oceanography

Home

Members

Libraries

Publications

Meetings

Employment

Activities

Search

Colimitation of the unicellular photosynthetic diazotroph *Crocosphaera* watsonii by phosphorus, light, and carbon dioxide

Nathan S. Garcia, Fei-Xue Fu and David A. Hutchins

Limnol. Oceanogr., 58(4), 2013, 1501-1512 | DOI: 10.4319/lo.2013.58.4.1501

ABSTRACT: We describe interactive effects of total phosphorus (total P = 0.1 - 4.0 μmol L-'; added as H,NaPO_), irradiance (40 and 150 µmol quanta m⁻² s⁻¹), and the partial pressure of carbon dioxide (; 19 and 81 Pa, i.e., 190 and 800 ppm) on growth and CO₂- and dinitrogen (N₂)-fixation rates of the unicellular N_s-fixing cyanobacterium Crocosphaera watsonii (WH0003) isolated from the Pacific Ocean near Hawaii. In semicontinuous cultures of C. watsonii, elevated positively affected growth and CO,- and N,-fixation rates under high light. Under low light, elevated positively affected growth rates at all concentrations of P, but CO,- and N,-fixation rates were affected by elevated only when P was low. In both high-light and low-light cultures, the total P requirements for growth and CO₂- and N₂-fixation declined as increased. The minimum concentration (C_{mm}) of total P and half-saturation constant (K_{ahar} ;) for growth and CO_2 - and N_2 -fixation rates with respect to total P were reduced by 0.05 µmol L⁻¹ as a function of elevated . We speculate that low P requirements under high resulted from a lower energy demand associated with carbonconcentrating mechanisms in comparison with low- cultures. There was also a 0.10 µmol L⁻¹ increase in C_{\min} and $K_{\text{abs} p_1}$ for growth and N_2 fixation with respect to total P as a function of increasing light regardless of concentration. We speculate that cellular P concentrations are responsible for this shift through biodilution of cellular P and possibly cellular P uptake systems as a function of increasing light. Changing concentrations of P, CO,, and light have both positive and negative interactive effects on growth and CO₂-, and N₂-fixation rates of unicellular oxygenic diazotrophs like C. watsonii.

Article Links

Download Full-text PDF

Return to Table of Contents

Please Note

Articles in L&O appear in PDF format. Open access articles may be freely downloaded by anyone. Other articles are available for download to subscribers only, or may be purchased for \$10 per