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Abstract. The application of nonlinear schemes like dual time stepping as
preconditioners in matrix-free Newton-Krylov-solvers is considered and ana-
lyzed. We provide a novel formulation of the left preconditioned operator
that says it is in fact linear in the matrix-free sense, but changes the Newton
scheme. This allows to get some insight in the convergence properties of these
schemes which are demonstrated through numerical results.

1. Introduction

During the last decades, a lot of attention has been payed to steady flows with
the result that fast solvers exist for this type of flows. Thus, attention is turning to
the unsteady Navier-Stokes-equations. There, implicit schemes for time integration
are much more interesting than explicit schemes, which are then severely restrained
by the CFL condition. Usually, A-stable methods like BDF-2 are employed. For
implicit schemes, their applicability is determined by the availability of fast solvers
for the arising large nonlinear equation systems. However, it has to be said that
currently, no fast solver exists for this type of flow.

As was shown by Jameson and Caughey in [CJ01], the solution of steady Euler
flows is today possible in three to five multigrid steps. Thus, two dimensional flows
around airfoils can be solved on a PC in a matter of seconds. The solution of the
steady RANS equations is more difficult and takes about fifty steps. Using dual time
stepping, the above mentioned multigrid method can be used for unsteady flows.
This results in a good method for Euler flows, but for the Navier-Stokes equations,
dual time stepping was observed to be very slow for some cases, in particular for
turbulent flows on high aspect ratio grids.

The alternative to this is to use Newton’s method, which requires the solution
of large sparse linear equation systems, usually by preconditioned Krylov subspace
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methods like GMRES or BiCGSTAB. Due to the excessive memory requirements for
Navier-Stokes flows in three dimensions, matrix-free methods that circumvent com-
putation and storage of the jacobian are an attractive alternative, see the overview
paper by Knoll and Keyes [KK04]. Newton’s method suffers from the problem
that convergence is guaranteed only in a neighborhood of the solution and that the
linear equation systems become more difficult to solve, the larger the chosen time
step is.

To improve upon the existing methods, several approaches have been tried.
Jameson and Hsu suggest in [HJ02] to use one step of the ADI method, followed
by few multigrid steps for the dual time problem, which is similar to using one
Newton step, followed by dual time stepping. Bijl and Carpenter on the other
hand use k1 dual time steps up front, followed by k2 steps of Newton’s methods,
see [BC05]. Both report an improvement in comparison to the base pure dual time
stepping scheme. Noskov et. al. look at the prospects of using ADI-schemes as
preconditioners [NBS07].

In this paper, we will look at the idea of using dual time stepping as nonlin-
ear preconditioner for the linear solver. This was first tried by Wigton, Yu and
Young in 1985 [WYY85], lately by Mavriplis [Mav02] and Bijl and Carpenter
[BC05]. Here, we look at the novel formulation for the nonlinearly left precon-
ditioned operator in the matrix-free case presented in [BJ], thus obtaining new
insight into those methods. Furthermore, we look at the numerical performance of
right preconditioning.

2. The governing equations

The Navier-Stokes equations are a second order system of conservation laws
(mass, momentum, energy) modeling viscid compressible flow. We consider the two
dimensional case, written in conservative variables density ρ, momentum m = ρv
and energy per unit volume ρE:

∂tρ + ∇ · m = 0,

∂tmi +

2
∑

j=1

∂xj
(mivj + pδij) =

1

Re

2
∑

j=1

∂xj
Sij , i = 1, 2,

∂t(ρE) + ∇ · (Hm) =
1

Re

2
∑

j=1

∂xj

(

2
∑

i=1

Sijvi −
1

Pr
Wj

)

.

Here, S represents the viscous shear stress tensor and W the heat flux. As
the equation are dimensionless, the Reynoldsnumber Re and the Prandtlnumber
Pr appear. The equations are closed by the equation of state for the pressure
p = (γ − 1)ρe.

3. The Method

The standard method to solve this type of equations are finite volume methods.
We consider some general finite volume space discretization, which is represented
by the grid function R(w), which acts on the vector of all conserved variables w:

(Vw)t + R(w) = 0,
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where the diagonal matrix V represents the volume of the cells of the grid.
As time integrator we use BDF-2 which results for a nonmoving grid and a fixed
timestep ∆t in the equation

V

∆t
(
3

2
wn+1 −

4

2
wn +

1

2
wn−1) + R(wn+1) = 0.

Multiplying by two, we define the function F(w) to obtain the nonlinear equa-
tion system for the unknown w = wn+1

(3.1) F(w) =
V

∆t
(3w − 4wn + wn−1) + 2R(w) = 0.

3.1. Newton-Krylov-Method. The numerical solution of the above nonlin-
ear equation system can be done using Newton’s method. One Newton step is given
by:

(
3

∆t
V + 2

∂R(w)

∂w
)|w(k)∆w = −F(w(k))

w(k+1) = w(k) + ∆w.

We solve this linear equation system with system matrix A = ( 3
∆t

V+2∂R(w)
∂w

)|w(k)

using matrix free Krylov subspace methods. These approximate the solution to the
linear system in the Krylov subspace

x0 + span{r0,Ar0,A
2r0, ...,A

m−1r0}.

Since Krylov subspace methods never need the matrix A explicitely, but only
matrix-vector products, we circumvent the expensive computation of the Jacobian
to obtain a matrix-free method. This is done by approximating all matrix vector
products by finite difference approximations of directional derivatives:

Aq ≈
F(w(k) + ǫq) − F(w(k))

ǫ
=

3V

∆t
q + 2

R(w(k) + ǫq) − R(w(k))

ǫ
.

For epsilon, we use ǫ =
√

ǫmachine

‖q‖2
following [QLS00]. As reported by several

authors, GMRES-like methods as GCR that have an optimality property are more
suitable for this approach than methods like BiCGSTAB with short recurrences.

• x0 = 0, r0 = b − Ax0, k=-1.
• while ‖rk‖2 > tol do

– k = k + 1
– pk = rk

– qk = Apk

– for i = 0, 1, . . . , k − 1 do
– αi = qT

i qi,qk = qk − αiqi,pk = pk − αipi

– endfor
– qk = qk/‖qk‖2, pk = pk/‖qk‖2

– xk+1 = xk + pkq
T
k rk

– rk+1 = rk − qkq
T
k rk

• endwhile
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The GCR algorithm is iterated until the relative linear residual has dropped by
some factor, furthermore it is possible to restart after a fixed number of iterations
to bound the memory needed. Newton is iterated until a maximal number of steps
has been performed or the norm of F(w(k)) is below some threshhold.

3.2. Dual Time stepping. The dual time stepping scheme solves the equa-
tion system (3.1) by adding a pseudo time derivative and computing the steady
state of the following equation system:

∂w

∂t∗
+ F(w) = 0.

This is done using the nonlinear multigrid method for the computation of steady
flows of Jameson et al. [Jam04]. There, two special Runge-Kutta schemes for the
convective and the dissipative fluxes, which have large stability regions, are used
as a smoother. The prolongation Q is done using bilinear interpolation and the
restriction by using volume-weighted averages of the entries of w. Convergence is
accelerated by local time stepping and residual averaging. Then, a W-cycle with
four or five grid levels is performed.

This results in a very fast method for Euler flows, which needs only three to five
multigrid steps per time step [CJ01]. For Navier-Stokes flows, this is significantly
slower, in particular for high aspect ratio grids and turbulent flows, where sometimes
more than a hundred steps are needed for convergence.

4. Left Preconditioning

The convergence speed of Krylov subspace methods can and has to be signif-
icantly improved using preconditioners. A preconditioner P−1 is usually a linear
operator that is an approximation of A−1. First, we have left preconditioning:

P−1Ax = P−1b,

and the Krylov subspace is changed to

x0 + span{P−1r0,P
−1AP−1r0, (P

−1A)2P−1r0, ..., (P
−1A)m−1P−1r0}.

Here, we will use nonlinear schemes like dual time stepping as preconditioners.
This was first tried by Wigton, Yu and Young in 1985 [WYY85], lately by Mavriplis
[Mav02] and Bijl and Carpenter [BC05]. Following those, we define the nonlinear
preconditioner for the matrixfree method via

(4.1) −P−1F(x) = N(x) − x.

Since N is nonlinear, we expect P−1 to be changing with every step, so the
space in which the Krylov subspace method works would be

x0 + span{P−1
0 r0,P

−1
1 AP0r0,P

−1
2 AP−1

1 AP−1
0 r0, ...}.

This is in general not a Krylov subspace. However, for the matrix-free method
we have

P−1Aq =
P−1F(w(k) + ǫq) − P−1F(w(k))

ǫ
.

For the first term we have
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−P−1F(w(k) + ǫq) = N(w(k) + ǫq) − w(k) − ǫq

and we obtain

P−1Aq =
−N(w(k) + ǫq) + w(k) + ǫq + N(w(k)) − w(k)

ǫ
.

Now, in the matrix free sense, this is nothing but

(4.2) P−1Aq = (I −
∂N

∂w
)|w(k)q.

Thus this is not a nonlinear, but a linear operator and may be applied to any
Krylov subspace method without changes. We also obtain a representation of the
preconditioner: P−1 = (I − ∂N

∂w
)|w(k)A−1.

However, the preconditioned right hand side is slightly off. In the current
method, the definition of the preconditioner is applied when computing the precon-
ditioned right hand side:

−P−1F(w(k)) = N(w(k)) − w(k).

But, as we just saw, the correct thing would be to apply (4.2), resulting in

(4.3) −(I−
∂N

∂w
)A−1F(w(k)) = (I −

∂N

∂w
)∆w(k) = w(k+1) − w(k) −

∂N

∂w
∆w(k).

Note that this cannot be fixed easily since w(k+1) is an unknown. One approach
would now be to approximate the right hand side of (4.3), but the most reasonable
approximation is w(k) and then we would end up with a zero right hand side and
no update for Newton.

We will now use the novel formulation (4.2) to look more closely at the prop-
erties of the new method. In particular, it becomes clear that the preconditioned
operator I − ∂N

∂w
|w(k) is not necessarily better than A as far as convergence is

concerned. For the special case of the dual time stepping method, the precondi-
tioner is equal to the original value plus an update from the multigrid method:
N(w) = w + MG(w). We thus obtain

I −
∂N

∂w
=

∂MG

∂w
.

If the dual time stepping stalls, for example because we are close to a steady
state, this is close to zero and may be ill conditioned and thus hinder convergence.

5. Right Preconditioning

Another alternative is right preconditioning, which corresponds to

AP−1y, x = P−1y.

This uses the same Krylov subspace, but after the iteration is finished, the solution
has to be transformed back. Right preconditioning in the matrix-free case becomes
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AP−1q ≈
F(w(k) + ǫP−1q) − F(w(k))

ǫ

=
3V

∆t
P−1q + 2

R(w(k) + ǫP−1q) − R(w(k))

ǫ
,

which means that before applying A, we have to apply the preconditioner to q. In
the nonlinear case the following problems occur:

(1) GMRES uses basisvectors of the solution space. We don’t know how to
apply multigrid to something like ∆w.

(2) Since P−1 might be variable, we do not really know what the proper
backtransformation would be.

The second problem is solved by the flexible GMRES method [Saa93], but
not the first. However, both problems are solved by GMRES-* [vdVV94]. The
right preconditioner is represented by the *, which is applied by replacing the line
pk = rk in the GCR algorithm with the application of the preconditioner to rk and
the storing of the result in pk. Thus, the preconditioner works with residualvectors
and nonlinear right preconditioning is applied via:

P−1rm ≈ P−1F(w(k) + xm) = w(k) + xm − N(w(k) + xm).

This is a truly nonlinear method, which does not have the presented problem
of the left preconditioner of changing the right hand side of the Newton scheme.

6. Numerical Experiments

Our basic multigrid solver is UFLO103 developed by Jameson et. al. As
numerical flux function, we employ the central scheme of Jameson, Schmidt and
Turkel (JST-scheme).

6.1. Effect on linear solver. At first we consider the effect of the nonlinear
preconditioner on the linear iterative scheme. The first test case is the computation
of the steady state around the NACA0012 airfoil at Mach 0.796 and zero angle of
attack.

At first, we consider viscous flow on a 256 × 64 mesh. In an initial phase, we
perform 20 steps of the steady state solver. Then, we switch to the instationary
solver, so that we are still in a phase of the computation where instationary effects
are present. In figure 1, the convergence history of different solvers for the first
linear system to be solved is shown. We iterate until the norm of the residual has
dropped by three orders of magnitude. We can see that the nonlinear preconditioner
improves the convergence speed significantly, whereas the unpreconditioned solver
stagnates. Right precoditioning is slightly better than no preconditioning, but not
much.

As a second test case, we consider Euler flow on a 192 × 32 mesh. where we
have computed the steady state already and the steady state multigrid solvers has
slowed down (NACA0012, Mach 0.796). Again we show the convergence history
for the first linear system to be solved. It can be seen in figure 2 that now, the left
preconditioned scheme is not an improvement over the unpreconditioned scheme.
Apparently, N(w) is close to the identity. The right preconditioned scheme is even
worse.
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Figure 1. Linear Res. vs. Iter. for one system for unsteady
viscous flow
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Figure 2. Linear Residual vs. Iterations for one system for sta-
tionary Euler flow

6.2. Effect on nonlinear solver. We now consider the effect of left precon-
ditioning on Newton convergence. As we saw from the analysis, the nonlinear left
preconditioner changes the right hand side of the linear system, so that the pre-
conditioned system is no longer equivalent to the original one. While we saw in
the first example that left preconditioning is beneficial for convergence of the linear
solver in the relevant case of nonsteady flowfields, the question arises whether this
affects Newton convergence. To test this, we consider one time step and look at the
nonlinear residual to get an indication of the convergence of the Newton scheme.

The left picture shows one time step for the Euler flow around the NACA0012
profile from the last example, whereas the second picture shows one time step for
viscous flow around a cylinder at Reynolds number 100.000 and freestream Mach
number 0.25, before the onset of turbulence. A 512 × 64 mesh was used for the
second case.

As we can see, if left preconditioning is used, the residual curve stalls. This
is only an indicator for the convergence of the Newton scheme, but cannot be
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Figure 3. Convergence of Newton scheme for Euler flow (left)
and for viscous flow around cylinder (right)

considered good. However, it should be mentioned that for the cases we tested, the
left preconditioned scheme did provide correct results.

7. Conclusions

We found a novel formulation of the nonlinear preconditioned operator that
allows to investigate the properties of such schemes better. In particular, it turns
out that the left preconditioned scheme can be seen as a linear preconditioner in
the matrix-free sense that changes the right hand side of the Newton scheme in
a nonequivalent way, leading to stall of the residual curve of the Newton scheme.
The analysis predicts specific convergence behavior for the linear and the nonlinear
iterative solver which is confirmed by numerical experiments.
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