

Stress analysis of functionally graded rotating discs:analytical and numerical solutions

Hasan Çallio?lu, Numan Behlül Bekta?, Metin Sayer

Department of Mechanical Engineering, Pamukkale University, Kinikli Campus, 20020, Denizli, Turkey

Abstract	Reference	Related Articles		
Download: PDF (214KB) HTML (1KB) Export: BibTeX or EndNote			te (RIS) Supporting Info	

Service

Articles by authors

Email this article

▶ Email Alert

▶ RSS

Add to my bookshelf

Add to citation manager

Abstract This study deals with stress analysis of annular rotating discs made of functionally graded materials (FGMs). Elasticity modulus and density of the discs are assumed to vary radially according to a power law function, but the material is of constant Poisson's ratio. A gradient parameter *n* is chosen between 0 and 1.0. When *n*=0, the disc becomes a homogeneous isotropic material. Tangential and radial stress distributions and displacements on the disc are investigated for various gradient parameters *n* by means of the diverse elasticity modulus and density by using analytical and numerical solutions. Finally, a homogenous tangential stress distribution and the lowest radial stresses along the radius of a rotating disc are approximately obtained for the gradient parameter *n* = 1.0 compared with the homogeneous, isotropic case *n*=0. This means that a disc made of FGMs has the capability of higher angular rotations compared with the homogeneous isotropic disc.

Keywords: Functional graded materials Stress analysis Analytical analysis Finite element analysis (FEA)

Received 2010-12-01; published 2011-03-21

Cite this article:

Hasan Çallioğlu, Numan Behlül Bektaş, Metin Sayer. Stress analysis of functionally graded rotating discs: analytical and numerical solutions[J] Acta Mechanica Sinica, 2011, V27(6): 950-955

Copyright 2010 by Acta Mechanica Sinica