

Hide Expanded Menus

GAO Lin, JIANG Li-jun, CUI Shu-xin, GAO Ge. Numerical simulation of airfoil flows with a turbulence model[J]. 航空动力学报, 2014, 29(2):475~480

Numerical simulation of airfoil flows with a turbulence model Numerical simulation of airfoil flows with a turbulence model $\frac{1}{2013-03-21}$

DOI: 10.13224/j.cnki.jasp.2014.02.029

中文关键词: <u>turbulence</u> <u>airfoil</u> <u>incompressible</u> <u>separation</u> <u>openFOAM</u>

英文关键词:<u>turbulence</u> <u>airfoil</u> <u>incompressible</u> <u>separation</u> <u>openFOAM</u>

基金项目:

作者	单位
<u>GAO Lin</u>	<u>National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics, School of Energy and Power</u> Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
<u>JIANG Li-jun</u>	<u>National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics, School of Energy and Power</u> Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
<u>CUI Shu-xin</u>	<u>National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics, School of Energy and Power</u> Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
<u>GAO Ge</u>	<u>National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics, School of Energy and Power</u> <u>Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China</u>

摘要点击次数: 101

全文下载次数:143

中文摘要:

Turbulent flows over AS240 and NACA4412 airfoil were simulated numerically using a two-equation turbulence model named $k-\xi$ model. The predictions of velocity profiles and the pressure coefficient of airfoil AS240 at 8°/19° attack angle and NACA4412 at 13.87° attack angle were calculated. The results were compared with those using $k-\varepsilon$ and $k-\omega$ models, as well as experimental data. It indicates that the new $k-\xi$ model offers more realistic prediction than the other two models. The main finding shows that the new $k-\xi$ model is good at predicting separated flows around airfoils, and it captures the flow feature of pressure-induced separation adequately. All calculations are implemented as per openFOAM 1.7.1 (open source field operation and manipulation). 英文摘要:

Turbulent flows over AS240 and NACA4412 airfoil were simulated numerically using a two-equation turbulence model named $k-\xi$ model. The predictions of velocity profiles and the pressure coefficient of airfoil AS240 at 8°/19° attack angle and NACA4412 at 13.87° attack angle were calculated. The results were compared with those using $k-\varepsilon$ and $k-\omega$ models, as well as experimental data. It indicates that the new $k-\xi$ model offers more realistic prediction than the other two models. The main finding shows that the new $k-\xi$ model is good at predicting separated flows around airfoils, and it captures the flow feature of pressure-induced separation adequately. All calculations are implemented as per openFOAM 1.7.1(open source field operation and manipulation).

查看全文 <u>查看/发表评论</u> 下载PDF阅读器

关闭

友情链接:	中国航空学会	北京航空航天大学	EI检索	中国知网	万方	中国宇航学会	北京勤云科技			
您是第 6116767 位访问者										
Copyright© 2011 航空动力学报 京公网安备110108400106号 技术支持: 北京勤云科技发展有限公司										