

Agricultural Journals

Research i AGRICULTURA **ENGENEERIN**

home page about us contact

	US
Table of	
Contents	
IN PRESS	
RAE 2013	
RAE 2012	
RAE 2011	
RAE 2010	
RAE 2009	
RAE 2008	
RAE 2007	
RAE 2006	
RAE 2005	
RAE 2004	
RAE 2003	
RAE Home	
Editorial	
Board	
DUAIU	

For Authors

- Authors
 Declaration
- Instruction to Authors
- Guide for Authors
- Copyright
 Statement
- Submission

For Reviewers

- Guide for Reviewers
- Reviewers
 Login

Subscription

Res. Agr. Eng.

Hellebrand H.J., Scholz V., Kern J.: Nitrogen conversion and nitrous oxide hot

spots in energy crop cultivation

Res. Agr. Eng., 54 (2008): 58-67

Since 1999, nitrous oxide (N_2O) soil emissions from sites cultivated with energy plants have been measured by gas chromatography and gas flux chambers in experimental fields. The main aim of this study was the nitrogen conversion factor and its variability for sandy soils under climatic conditions of Central Europe. Annual plants (hemp, rape, rye, sorghum, triticale) and perennial plants (grass, perennial rye, poplar, willow) were fertilised with three different levels of nitrogen (150 kg N/ha/year, 75 kg N/ha/year, and none). The annual nitrogen conversion factors were derived from the annual mean differences between the fertilised sites and non-fertilised control sites. The mean nitrogen conversion factor for the noncultivated soils was lower (perennial crops: 0.4%) than that for the regularly cultivated soils (annual crops: 0.9%). Fev times, enhanced N₂O emission spots wit

several weeks, were observed in the