

Agricultural Journals

Research in AGRICULTURAL ENGENEERING

home page about us contact

	US
Table of	
Contents	
IN PRESS	
RAE 2013	
RAE 2012	
RAE 2011	
RAE 2010	
RAE 2009	
RAE 2008	
RAE 2007	
RAE 2006	
RAE 2005	
RAE 2004	
RAE 2003	
RAE Home	

Editorial Board

For Authors

- Authors
 Declaration
- Instruction to Authors
- Guide for Authors
- Copyright
 Statement
- Submission

For Reviewers

- Guide for Reviewers
- Reviewers
 Login

Subscription

Res. Agr. Eng. D. Herák, V. Šleger, R. Chotěborský, K. Houška, E. Janča

characteristic of mechanical frictional variable speed drive

Res. Agr. Eng., 52 (2006): 61-68

The paper describes a new system of mechanical spherical conical friction drive. In the present a row of simple friction, belt, chain, wave and differential variable speed drives is published. For the required range of speed variation they are altogether unfit. The currently used power transmissions are of low efficiency (60–70%). Therefore the better power transmission efficiency is required. The possibility of multicontact power transmission appears as the most suitable principle of the power transmission. Using the designed function model, which was made according to the small tractor producers requirements, the real output kinematical characteristic was measured. It is derived the complete drive conversion unit kinematics and the theoretical kinematical characteristic design. The theoretical design is compared with the real

characteristic determined by measuring using the test station. From the measured values we determined that the geometrical characteristic, i.e. the relation between output speed and ring position, corresponds in the ring position range $(2.8 \div 14)$ mm to the theoretical premise.

Keywords:

variable speed drive; friction drive; kinematical characteristic; kinematical design

[fulltext]

© 2011 Czech Academy of Agricultural Sciences

XHTML1.1 VALID