

Agricultural Journals

Research i AGRICULTURA **ENGENEERIN**

home page about us contact

	US
Table of	
Contents	
IN PRESS	
RAE 2013	
RAE 2012	
RAE 2011	
RAE 2010	
RAE 2009	
RAE 2008	
RAE 2007	
RAE 2006	
RAE 2005	
RAE 2004	
RAE 2003	
RAE Home	
Board	

For Authors

- Authors
 Declaration
- Instruction to Authors
- Guide for Authors
- Copyright
 Statement
- Submission

For Reviewers

- Guide for Reviewers
- Reviewers
 Login

Subscription

Res. Agr. Eng.

Kumhála F., Kvíz Z., Kmoch J., Prošek V.: Dynamic laboratory measurement with

dielectric sensor for forage mass flow determination

Res. Agr. Eng., 53 (2007): 149-154

A new parallel plate capacitance sensor was built consisting of two metal sheets. The sensor – a capacitor and the whole oscillating circuit was driven at 27 MHz frequency. Dynamic laboratory experiments were performed with grass from a natural meadow in order to evaluate the possibility of the forage mas flow determination by means of this sensor. The results revealed a relatively strong linear relationship between the feed rates of the wet forage crop material passing through the sensor between its plates and the measured capacitance sensor circuit output frequency. The coefficients of determination (R2) varied from 0.9 to 0.96. Further improvement of