
 

CHANGE DETECTION FOR UPDATES OF VECTOR DATABASE THROUGH REGION-
BASED CLASSIFICATION OF VHR SATELLITE DATA 

 
Carleer Alexandre a, ∗, Wolff Eléonore a 

a Institut de gestion de l’Environnement et d’Aménagement du Territoire, Université Libre de Bruxelles, cp 130/02, 50 avenue F.D. 
Roosevelt, 1050 Brussels, Belgium, acarleer,ewolff(@ulb.ac.be) 

 
 

KEY WORDS: Change detection, Database updating, Very high spatial resolution satellite images, Object based classification, 
PLEIADES-HR data
 
 
ABSTRACT: 
 
Until now, interpretation of aerial photographs is a standard tool for monitoring land cover change where fine spatial resolutions are 
required and this task is expensive and time-consuming. Though, from a spaceborne perspective, the VHR satellite data are, since 
1999, capable to meet the mapping and monitoring needs of municipal and regional planning agencies. Indeed, these data from the 
sensors Ikonos, QuickBird, OrbView-3, and in near future, the Pléiades-HR French sensors, have spatial resolution lower than 5 m in 
multispectral mode and lower than 1 m in panchromatic mode. These new sources of data combine the advantages of satellite data 
(synoptic view, digital format suitable for computer processing, quantitative land surface information at large spatial coverage and at 
frequent temporal intervals …) with the very high spatial resolution. 
In spite of these advantages, the use of VHR satellite data involves some problems in traditional per-pixel classification often used in 
change detection techniques. There are still two occurring classification problems that can strongly deteriorate the result of a per-
pixel classification of the VHR satellite data: spectral variability and poor spectral resolution. A solution to overcome these problems 
is the region-based classification that can be integrated in the common change detection techniques. The segmentation, before 
classification, produces regions which are more homogeneous in themselves than with nearby regions and represent discrete objects 
or areas in the image. Each image region then becomes a unit analysis and makes it possible to avoid much of the structural clutter. 
Image segmentation provides a logical transition from the units of pixels to larger units in maps more relevant to detect the changes 
in these. 
In this context, this research project suggests to use region based classification of VHR satellite data in the change detection processe 
for updates of vector database.  
 

1. INTRODUCTION 

Up-to-date knowledge of land cover is an important tool for 
the various planning authorities with responsibilities for the 
management of territory (Marçal et al., 2005). The geospatial 
objects are changing over time and the land cover information 
(vector geospatial database) has to be up-date periodically. In 
general, change detection in a vector geospatial database 
involves the application of multi-temporal datasets to 
quantitatively analyse the changes. Because of the advantages 
of repetitive data acquisition, satellite remotely sensed data, 
such as Satellite Pour l’Observation de la Terre (SPOT), 
Thematic Mapper (TM), and Advanced Very High Resolution 
Radiometer (AVHRR), have become major data sources from 
local to global scales for different change detection applications 
during the past decades (Lu et al., 2003). However, planners 
and land managers require VHR data to address land cover 
problems at higher order thematic levels where spatial 
resolutions of 5 m or lower are required (Rogan and Chen, 
2004).  
The vector geospatial databases at a local scale in Belgium (e.g. 
National Geographic Institute 1/10000 topographic maps) were 
carried out by digital cartographic production process based on 
aerial photographs, and the update of these databases is now at 
the agenda.  
Until now, interpretation of aerial photographs is a standard 
tool for monitoring land cover change where fine spatial 
resolutions are required (Loveland et al., 2002, Weis et al., 
2005) and this task is expensive and time-consuming. 
Though, from a spaceborne perspective, the VHR satellite data 
are, since 1999, capable to meet the mapping and monitoring 
needs of municipal and regional planning agencies (Treitz P., J. 
Rogan, 2004). Indeed, these data from the sensors Ikonos, 

QuickBird, OrbView-3, and in near future, the Pléiades-HR 
French sensors, have spatial resolution lower than 5 m in 
multispectral mode and lower than 1 m in panchromatic mode. 
These new sources of data combine the advantages of satellite 
data (synoptic view, digital format suitable for computer 
processing, quantitative land surface information at large spatial 
coverage and at frequent temporal intervals …) with the very 
high spatial resolution (Prenzel, 2004).  
 
2. CHANGE DETECTION TECHNIQUES 

The change detection techniques can be divided in two main 
types according to the data used to detect the changes: the 
image-database change detection and the image-image change 
detection. 
In the first type the interpreted image is directly compared with 
the vector geospatial database.  
Knudsen and Olsen (2003) detected the changes between a 
vector geospatial database and scanned aerial photographs, 
focusing on ‘building’ object class. They spectrally classified 
the scanned aerial photographs and overlaid the classification 
with the vector database in order to detect the new building.  
Walter (2004) used a region-based classification for change 
detection. In this method, the objects, coming from the vector 
geospatial database that must be update, are spectrally classified 
and compared with the original database to detect the changes. 
This method is effective if a major change occurs in the original 
regions. Indeed, a change in the landscape can only be detected 
if it affects a large part of an object because the object-based 
classification uses the existing object geometry. If, for example, 
a building is built in a large forest area, this method fails to 
detect this new building. 



 

In the second change detection type, Dai and Khorram (1999) 
characterize the image-image change detection techniques by 
their functionalities and the data transformation procedures. 
They define two broad categories: 

− The techniques where only changes and non-changes 
are detected and no categorical change information 
can be directly provided (for example, image 
differencing, image rationing and image regression); 
and 

− The techniques where complete categorical changes 
are extracted (for example, post-classification 
comparison and direct multidate classification). 

In the first category, changed and non-changed areas are 
separated by a preset threshold when comparing the spectral 
reflectance values of multitemporal satellite images (Dai and 
Khorram, 1999). Then, the amount of change is a function of 
the preset threshold, determined by experiments in the tails of 
the histogram representing change information (Lu et al., 2003), 
that constitute a critical step of the change/no-change detection 
techniques. Moreover, these techniques involve often 
radiometric calibration between dates. 
The simple detection of change is rarely sufficient in itself: 
information is generally required on the initial and final land 
cover types – the ‘from-to’ analysis where complete 
categorical changes are extracted (Fuller et al., 2003). The 
major advantage of the second category is the capability of 
providing a matrix of change information (transition detection 
matrix) and reducing external impact from atmospheric and 
environmental differences between the multi-temporal images 
(Lu et al., 2003). Post-classification (delta classification) 
comparison is a common approach used for change detection 
(Lu et al., 2003). The principal advantage of delta classification 
lies in the fact that the two dates of imagery are separately 
classified, thereby minimizing the problem of radiometric 
calibration between dates (Coppin et al., 2004). However, the 
accuracy of the post-classification comparison is totally 
dependent on the accuracy of the initial classifications. The 
final accuracy very closely resembles that resulting from the 
multiplication of the accuracies of each individual classification 
(Petit and Lambin, 2001, Coppin et al., 2004). 
In practice, an analyst often selects several methods to 
implement change detection in a study area, then compare and 
identify the best results through accuracy assessment (Lu et al., 
2003) but among all ‘from-to’ change detection techniques, a 
supervised digital classification is used and this type of 
classification is generally applied on a per-pixel basis. 
 
3. REGION-BASED CLASSIFICATION 

In this framework, there are still two occurring classification 
problems that can strongly deteriorate the result of a per-pixel 
classification of the VHR satellite data (Irons et al., 1985, Smith 
and Fuller, 2001, De Wit and Clevers, 2004): spectral 
variability and poor spectral resolution. The spectral 
variability tends to reduce per-pixel classification accuracies 
and the resulting per-pixel classification will have a speckled 
appearance (salt-and-pepper effect) (Smith and Fuller, 2001). 
Besides the problem of increased variability, the VHR data 
have a relatively poor spectral resolution. Generally, there is a 
trade-off between the spatial resolution and the spectral 
resolution (Alpin et al., 1997, Key et al., 2001). This poor 
spectral resolution of the VHR satellite data can lead to 
problems in land cover interpretation (Herold et al., 2003). 
Various solutions were developed to overcome these problems. 
For example, one possibility is proposed by Cushnie (1987) and 
Marceau et al. (1990) and consists of applying mathematical 

transformation to the original data to remove the excess 
spectral detail which is considered as noise (Cushnie, 1987). 
Some transformations are applied to the whole feature space 
(Principal Component Analysis …), while others are applied to 
individual bands through the process of spatial linear filtering. 
(e.g. mean-filter). This solution represents a reductionist 
approach, in the sense that they attempt to solve the problem of 
higher spectral confusion by eliminating part of the information 
that is present in the images. 
Another solution is the region-based classification that can be 
integrated in the common ‘from-to’ change detection 
techniques. The segmentation, before classification, produces 
regions which are more homogeneous in themselves than with 
nearby regions and represent discrete objects or areas in the 
image. Each image region then becomes a unit analysis and 
makes it possible to avoid much of the structural clutter. Image 
segmentation provides a logical transition from the units of 
pixels to larger units in maps (Ryherd and Woodcock, 1996) 
more relevant to detect the changes in these. 
Moreover, the image segmentation provides a good mean for 
the integration of land cover information from remotely sensed 
data in GIS, where the geospatial database are usually stored 
(Marçal et al., 2005) and provides to the classification process 
information that could not be derived from single pixel such as 
context and shape features. These are very important factor to 
photo-interpretation and image understanding. The use of 
additional features could allow to compensate for the poor 
spectral resolution of VHR satellite data (Guindon, 2000, 
Herold et al., 2002) and to increase the classification accuracy 
for spectrally heterogeneous classes (Lillesand and Kiefer, 
1994). 
In this context, the integration of the region-based classification 
in change detection techniques in order to detect the changes in 
local/regional geospatial vector database with VHR satellite 
data could be relevant. 
 

4. STUDY ZONE AND DATA 

The study area is situated in the southeast of Belgium, near the 
frontier with Luxembourg. The image data are panchromatic 
and XS QuickBird images acquired on 12 May 2004 with a 
spatial resolution of 0.6 m in the panchromatic band and 2.4 m 
in the multispectral bands. The study area covers 59 km² but for 
this study a 900mx900m study zone was used. 
This study zone was extracted from the orgthorectified 
QuickBird image and from the TOP10V-GIS IGN vector 
database. The TOP10v-GIS database is the vector Belgian 
National Geographical Institute 1/10000 topographic map. This 
land use/cover database is constituted of 93 classes. Then, a 
generalization is essential. 
With the satellite image and the vector database, a class 
transition reference was made. This reference allows to assess 
the change detection. 
 

5. METHOD 

The image – database change detection was chosen for this 
study in order to avoid radiometric correction, errors 
accumulation with the post-classification comparison and to use 
a priori knowledge from the vector database. 
 
In order to directly integrate the data, the database can be used 
in the segmentation process and constrains this. Then the 
database is used as basis of the image segmentation. Each 
region of the database is segmented in order to detect the 



 

different objects that compose them. That ensures the 
integration and the matching at the same time.  
These objects are classified and compared with the database 
classes in order to detect the changes. Another advantage of this 
method is to keep all database information and to do the 
generalization at different step of the process on the database 
and on the segmentation at the same time. 
 

 
Figure 1. Used change detection method  

 
5.1 Co-registration 

Of the various requirements of preprocessing for change 
detection, spatial registration and radiometric calibration are the 
most important (Lu et al., 2003, Prenzel, 2004, Rogan and 
Chen, 2004). Due to the used method the radiometric 
calibration is useless but the importance of accurate spatial 
registration of multi-temporal imagery and databases is obvious 
because largely spurious results of change detection will be 
produced if there is misregistration (Lu et al., 2003, Coppin et 
al., 2004). The QuickBird image was orthorectified according to 
the database and with a 10x10 m DTM available on the study 
zone. 
The geometric registration error between the images and the 
IGN database is expressed in terms of an acceptable total root 
mean square error (RMSE), which represents a measure of 

deviation of corrected GCP coordinate values from the original 
references GCPs used to develop the correction model. The 
lower RMSE achieved in this process is necessary to reduce the 
possibility of any false change detections due to misregistration 
of the co-registered image and database. The table x presents 
the RMSE for the panchromatic and XS QuickBird images. 
 
Table 2. RMSE for the QuickBird panchromatic and XS images 

(expressed in pixel of the orthorectified image) 
 

Nb GCP X RMSE Y RMSE
Panchromatic 48 0,98 1,54

XS 48 0,25 0,39  
 
5.2 Segmentation 

The segmentation technique used in this project will be a 
bottom up "Region Growing" technique implemented in the 
eCognition software. The procedure starts at each point in the 
image with one-pixel regions and in numerous subsequent 
steps, smaller image regions are merged into bigger ones until a 
certain heterogeneity value (scale parameter) is reached. The 
larger the scale parameter, the larger the image regions. This 
segmentation technique is not very sensitive to the texture 
(Carleer et al., 2005), very present in VHR data, and makes it 
possible to segment the image on several levels (multi-level). 
Each level is defined by a growing scale parameter value and is 
made up of the merger of the lower level regions. It was shown 
that in fact a single optimal scale could not accurately represent 
all classes in a complex scene, due to the contrasting sizes, 
shapes, and internal variation of the patches for different land-
cover classes (Raptis et al., 2003, Ju et al, 2005). The multi-
level segmentation allows to identify different objects in 
different segmentation level.  
Like said above, the database is used as basis of the image 
segmentation (Segmentation level 1) and each region of the 
database is segmented in order to detect the different objects 
that compose them (Segmentation level2) (Figure 3). 
 

 
 

 
 

Figure 3.Extract of the orthorectified panchromatic QuickBird image, (A) segmentation level 1 constrained by the vector database 
and (B) segmentation level 2. 

 
 



 

5.3 

5.4 

Classification and change detection 

The first segmentation level (constrained by the database) was 
classified according to the database classes in order to recover 
the database information. At this step a semantic generalization 
was carried out. The 93 Land-use/Land-cover classes were 
generalized in 5 classes: Barren surface, Building, Road, 
Vegetation and Water. For example, the 22 vegetation classes 
of the TOP10V-GIS database were gathered together in one 
Vegetation class. 
The second segmentation level was classified according to the 
same legend but with image features (spectral, textural and 
morphologic) with the Nearest Neighbor classification method. 
The features calculated on the regions can be numerous and 
they all cannot be used. Using all of them not only makes 
computer system slow, but compromises the accuracy of the 
classification (Penaloza and Welch, 1996, Guindon, 2000). A 
selection of relevant features for each class is then essential to 
minimize the redundant signatures. In order to find the most 
suitable features for each class, the public domain program 
"Multispec" was used. This program was designed for the 
analysis of multispectral and hyperspectral image data. The 
most suitable features are found by calculation of class 
separability based on the Bhattacharyya distance. 
The Bhattacharyya distance provides a separability score 
between each land cover class for a given set of features. This 
information can be used to identify the features that contribute 
the largest amount of separation of these classes. The 
Bhattacharyya distance measure is derived from training areas 
selected for each class. These training areas were selected by an 
expert as it is commonly done. Then, the best combination of 
four features is used in the classification process. 
 
Both segmentation levels were overlaid in order to detect the 
changes or transitions 
.  

Change detection evaluation 

Commonly, the change detection is assessed by different kind 
of matrixes completed by overlaying the change detection 
results with a reference. From the change/no change error 
matrix one can calculate how accurately change was 
distinguished from no change. But in the case of method that 
distinguish land-cover classes it is not meant for reporting the 
correctness of class assignment and therefore it does not report 
the frequency of “true no change, incorrect class” errors, nor 
does it report the frequency of “true change, incorrect class” 
errors. If done is also interested in the latter, then one needs the 
full transition error matrix (van Oort, 2007). 
According to the legend, a transition matrix was completed for 
each one of the 25 transition classes. 
From these two matrixes, the change detection accuracy and the 
transition detection accuracy are calculated. 
 

6. RESULTS 

The results of the “from-to” change detection are presented in 
the transition and change/no change matrixes (Table 5 and 6).  
The change detection accuracy and the transition detection 
accuracy can be both calculated from the transition matrix.  
The change detection accuracy = 72.3%, and 
the transition detection accuracy = 70.3%. 
These results are good and show that the changes were 
distinguished well from no changes, and that the classes are 
well classified. But the transition matrix highlights other 
interesting values.  

The classification detects seventh as much change than the 
reference but detects 90.5% of the true changes. 
The fact that the classification detects seventh as much change 
is easily explained. In the images there are a lot of occlusions of 
the roads, buildings and other surfaces by vegetation (trees) or 
shadows. Moreover, changes are detected in some regions like 
garden or crop fields. The gardens and crop fields classes in the 
database are considered like vegetation but parts of them are not 
covered by vegetation. There are terraces, paths or car ways and 
all these parts are detected like changes compared as vegetation.  
The 70.5% of change detection is explained in part by the 
classification errors but also by the class definition outlined 
above. 
 
Table 5. The “Change” detection matrix  
 

No change Change
Classification No change 8853285 53638

Change 3538499 514564

Change detection accuracy = 72,3%

Reference

 
 
Table 6. The “Transition” detection matrix 
 

Correct Incorrect Correct Incorrect
No change 8853285 0
Change 254731 25983 3

Transition detection accuracy = 70,3%

Cl
as

sif
ic

at
io

n

53638
3538499

Reference
No change Change

 
 

7. CONCLUSION 

This study case presents encouraging results in the change 
detection process integrating region-based classification. 
Solution must be found to overcome the class confusion and the 
occlusion problem. Also, the shadow remains a great problem 
in the interpretation of VHR satellite data even if some 
solutions based on shadow interpretation were investigated 
(Carleer and Wolff, 2006, Dare, 2005). 
For the database land-use classes, Steinnocher and Kressler 
(2006) proposed a solution. They detected the changes between 
a vector geospatial database and VHR satellite images. The aim 
of the analysis is to highlight those areas where changes are 
likely to have taken place. Depending on the number of classes 
and the aggregation level of the reference data the number of 
classes can be very different compared to those of the 
classification. For this reason comparison is carried out on the 
basis of plausibility as opposed to creating a change/no change 
map. Depending on which class is present in the reference data 
and which is in the classification, a segment is either assigned 
to the change class identical, plausible, questionable or new. 
This study highlights the difficulties of the use of VHR satellite 
images to detect change from a land cover/use database in an 
automatic way (land use classes, occlusion, shadow …) but 
solutions are in progress and the study shows the advantages of 
the VHR satellite images use instead of aerial images. 
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