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ABSTRACT: 

 

One of prime aspects of surveying projects is guidance of paths of a long tunnel from different directions and finally ending all paths 

in a specific place. This kind of underground surveying, because of particular condition, has some different points in relation to the 

ground surveying, including  Improper geometry in underground  transverse, low precise measurement in direction and length due to 

condition such as refraction, distinct gravity between underground point and corresponding point on the ground (both value and 

direction of gravity) and etc. To solve this problems, astro-geodetic that is part of geodesy science, can help surveying engineers. In 

this article, the role of astronomy is defined in two subjects:  

1- Azimuth determination of directions from entrance and exit nets of tunnel and also calibration of gyro-theodolite  to use them in 

Underground transvers: By astronomical methods, azimuth of directions can be determine with an accuracy of 0.5 arcsecond, whereas, 

nowadays, no gyroscope can measure the azimuth in this accuracy; For instance, accuracy of the most precise gyroscope (Gyromat 

5000) is 1.2 cm over a distance of one kilometre (2.4 arcsecond). Furthermore, the calibration methods that will be mention in this 

article, have significance effects on underground transverse. 

2- Height relation between entrance point and exit point is problematic and time consuming; For example, in a 3 km long tunnel ( in 

Arak- Khoram Abad freeway), to relate entrance point to exit point, it is necessary to perform levelling about 90 km. Other example 

of this boring and time consuming levelling is in Kerman tunnel. This tunnel is 36 km length, but to transfer the entrance point height 

to exit point, 150 km levelling is needed. According to this paper, The solution for this difficulty is application of astro-geodetic and 

determination of vertical deflection by digital zenith camera system TZK2-D. These two elements make possible to define geoid profile 

in terms of tunnel azimuth in entrance and exit of tunnel; So by doing this, surveying engineers are able to transfer entrance point 

height to exit point of tunnels in easiest way. 

 

 

1.1 Introduction 

Tunnel construction for transport and other usage have existed 

for centuries. They have been developed both in urban 

environments for mass traffic transports and in interurban 

environments. Tunnels are long and deep, especially in 

mountainous regions. Surveying represents an important role 

within these tunnels’ lifecycles by applying different 

technologies and methodologies, for different purposes, from the 

guidance of  new tunnels to the monitoring of old ones (Boavida 

et al, 2012). Astro-geodetic technique is one of the oldest and the 

most fundamental technique can be used for this application. 

The complete astro-geodetic works have a significant influence 

on the tunnel construction expenses, starting with the preparation 

of project documentation, tunnel cutting, staking out the route 

axis, control of work performance and surveying the completed 

situation (Zrinjski, 2006).   

Until the middle of the last century, exclusively astro-geodetic 

methods allowed the absolute determination of longitude and 

latitude related to the global terrestrial coordinate system. 

Essential early applications were positioning (e.g. on 

expeditions), orientation of geodetic networks or reference 

ellipsoids, determination of geoid profiles using the method of 

astronomical leveling (Hirt and Bürki, 2006).  Major improvements 

of astro-geodetic observation techniques could be achieved since 

the 1970’s when transportable photographic zenith cameras were 

successfully designed and constructed at the University of 

Hannover to determine vertical deflection component (Hirt et al, 

2010).  
Moreover, tunneling projects frequently involve the construction 

of long tunnels whose azimuths are to be determined very 

accurately, particularly prior to holing. Although conventional 

 

 

traverse methods may be employed, generally, these cannot 

guarantee the accuracy required and contractual conditions may 

then specify that independent gyro-theodolite  bearings must be 

obtained (Whetherelt and Hunt, 2002). So to do this operation 

exactly, the gyro-theodolite  must be calibrated. 

This research has yielded that astro-geodetic methods provide a 

fast result in controlling and  for guidance of tunnel excavation. 

 

1.2 Theory and Concept 

In this research the role of astro-geodetic in precise guidance of 

long tunnels have been dealt in two main subjects: 

 

1.2.1 ∆H determination 

Initial relative positioning results using the satellites of the 

Global Position system (GPS) encourage users to compute 

orthometric height differences, ∆H= H2-H1, by the use of well- 

known relation (Hein, 1984): 

           H2-H1: (h2-h1) - (N2-N1)                                              (1) 

Or          ∆H12= ∆h12 -∆N12 

Where ∆h=h2-h1 is difference in ellipsoidal heights and ∆N= (N2-

N1) is the difference in geoid heights. Whereas ∆h can be derived 

by GPS with an accuracy of 0.1 ppm, ∆N has to be determined 

using other data sources and formulas that will be mentioned. But 

the main problem is ∆H1,2 determination in long tunnel, because 

when entrance point height is known, to have exit point height, 

surveyors must do geometry levelling several kilometre more 

than the tunnel length especially in mountainous areas. So in this 

way, astro-geodtic can help surveyors to determine ∆H1,2 and 

after that engineers are able to calculate exit point height without 
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long time consuming. According to this research steps of ∆H1,2  

determination will be as the below diagram: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.2 Calibration and Correction in gyro-theodolite 

As known gyro-theodolite measure horizontal angles from the 

astronomical North (astronomical Azimuth) with an accuracy of 

±3″ (Lewén, 2006; Lambrou and Pantazis, 2004). The gyroscope 

theodolites used to be calibrated before and after their use in an 

arranged time period frame for their proper function. This is a 

very important check, which ought to be done carefully and 

repeatedly. So in this research 5 correction will be introduced to 

in order to assure the proper function of the instrument and the 

correct value of the measured astronomical azimuth. 

 After calibration of gyroscope and applying required correction 

to examine whether determined azimuth is right or wrong, that 

azimuth will be compare to the azimuth determined by 

astronomical (with an accuracy of 0.5‟) method.  

1.3 Data processing  

1.3.1  Vertical defelection components 

The astronomical coordinates (Φ, Λ) is obtained by means of 

direction measurements to celestial objects, primarily stars, 

whose equatorial coordinates right ascension α and declination δ 

are given in the International Celestial Reference System ICRS. 

Longitude Λ and latitude Φ define the spatial direction of the 

plumb line with respect to the International Terrestrial Reference 

System ITRS (Fig. 1). ITRS and ICRS are linked by Greenwich 

Sidereal Time GAST being a measure for Earth’s rotation phase 

angle. Astro-geodetic methods use the equivalence of 

astronomical coordinates (Φ,Λ) and equatorial coordinates (α,δ) 

for a star exactly located in zenith (Farzaneh, 2009) or other 

directions. When we observe star in zenith direction the equation 

will be:         Φ = δ      ,     Λ = α – GAST                                      (2) 

But for stars in other than the zenith direction, the geodetic 

coordination can be calculate by reading star height and time. 

Vertical deflections (ξ, η) are directly obtained by calculating the 

difference between astronomical coordinates and geodetic 

coordinates (ϕ, λ) to be determined with GPS. In linear  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

approximation, the components (ξ, η) are usually computed as 
(Hirt et al, 2010): CT= Correction Term                                                

ξ = Φ – ϕ+CT   ,  η = (Λ – λ) cos ϕ+CT                                              (3)  

Nowadays these components can be determined with GPS and 

Digital zenith camera (Abedini, 2015). 

 

1.3.2 Geodetic azimuth (𝛼12) and distance (𝒔𝟏𝟐) 

We can compute geodetic azimuth by using inverse problem 

equation that could be called Bessel Bessel's method and have a 

history dating back to F. W. Bessel's original paper on the topic 

titled: 'On the computation of geographical longitude and latitude 

from geodetic measurements. 

 

Inverse problem 

In this problem we are given P1(φ1 ,λ1) and P2 (φ2 ,λ2) With the 

ellipsoid constants a, f, b= a (1-f ), e2= f (2-f ) and eˊ2 =
e2

1−e2 

(Fig 2) and (Fig 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Astronomical coordinate and observation 

 

 

 
Figure 3. Geodesic on auxiliary sphere 

 

 
Figure 2. Geodesic on ellipsoid 

 

 

Diagram 1. Basic principle of ∆H determination 

Astronomical observation 

(Φ1, Λ1, AZ) 
(Φ2, Λ2, AZ) 

Using GPS 

 (ϕ1, λ1, h1) 
 (ϕ2, λ2, h2) 

 

ξ = Φ – ϕ    

η = (Λ – λ) cos ϕ                                             

Bessel's method   

(Inverse problem)                                        

𝛼12 ,   𝑠12                                  

 ΔN12 = (
ξ1+ ξ2

2
cos α12+ 

η1+ η2
2

sin α12) 

ΔN12                                            Δh12                                       

∆H12= ∆h12 -∆N12 

∆H12 
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A. Compute reduced latitude ψ1 and ψ2 of  P1 and  P2 from 

        Tan ψ=(1 − 𝑒2)
1

2 tan φ                                                      (4) 

B. Compute the longitude difference Δλ on the ellipsoid 

       Δλ = λ2 –λ1                                                                                                                      (5) 

C. Compute the longitude difference Δω on the auxiliary sphere 

between P1′ to  P2′ by iteration using the following sequence 

of equations until there is negligible change in Δω. 

 Sinσ = √𝑠𝑖𝑛2 𝜎  and cosσ. This will give  −180 ̊< σ ≤180.̊ 

        𝑠𝑖𝑛2𝜎 = (cos ψ2 sin Δω)2+ (cos ψ1 sin ψ2- sin ψ1 cos ψ2  

                   cos Δω)2                                                                                                      (6) 

    Cos σ = sin ψ1 sin ψ2 + cos ψ1 cos ψ2 cos Δω                    (7) 

    Tan σ= 
𝑠𝑖𝑛𝜎

cos 𝜎
 

   Sin aE = 
𝐶𝑂𝑆 ψ1 COS ψ2 sin Δω

sin 𝜎
                                                (8) 

    Cos 2 σm = cos σ- 
 2sin ψ1 sin ψ2

𝑐𝑜𝑠2 𝑎𝐸
                                          (9) 

   Δω= Δλ + (1-C) f sin aE {σ+ C sin σ[ cos2σm + 

   C cos σ( - 1+2 cos22σm)]}                                                       (11)                        

Where: 

    C= 
𝑓

16
 𝑐𝑜𝑠2 𝑎𝐸 (4+f (4- 3𝑐𝑜𝑠2𝑎𝐸)                                        (12) 

The first approximation for Δω in this iterative solution can be 

taken as Δω ≃ Δλ 

D. Compute the reduced latitude of the geodesic vertex ψ 0 from 

Cos ψ 0= sin 𝑎𝐸                                                             (13) 

E. Compute the geodesic constant 𝑢2  from 

𝑢2 = 𝑒ˊ2𝑠𝑖𝑛2 ψ 0                                                            (14) 

F. Compute Vincenity’s constants Aˊ and Bˊ from 

Aˊ=1+ 
𝑢2

16384
 (4096 + 𝑢2(−768 + 𝑢2(320 − 175𝑢2)))    (15) 

Bˊ= 
𝑢2

1024
 (256 + 𝑢2(−128 + 𝑢2(74 − 47𝑢2)))                   (16) 

G. Compute geodesic distances s from 

Δσ= Bˊ sinσ {cos2σ𝑚 +
1

4
 Bˊ [cosσ (2𝑐𝑜𝑠22σ𝑚 − 1) −

1

6 
  Bˊ 

cos2 σ𝑚 (-3+4𝑠𝑖𝑛2σ) (-3+44𝑐𝑜𝑠22σ𝑚)]}                                       (17) 

𝒔𝟏𝟐=bA (σ- Δσ)                                                                                (18) 

H. So finally the geodetic azimuth will be: 

Tan 𝛼12 = 
𝑐𝑜𝑠ψ 2 sin Δω

cos ψ 1 sin ψ 2−sin ψ 1 cos ψ 2 cos Δω
                         (19) 

I. Compute azimuth 𝛼2 from 

Tan 𝛼2 = 
𝑐𝑜𝑠ψ 1 sin Δω

−sin ψ 1 cos ψ 2+cos ψ 1 sin ψ 2 cos Δω
                      (20) 

So reverse azimuth 𝛼21  will be 

𝛼21= 𝛼2 ± 180̊                                                                        (21) 

 

1.3.3 Geoid undulation (∆N) 

 

The basic principle of astronomical levelling gives us a definite 

mathematical relationship between geoid undulations and 

vertical deflection (Vӧlgyesi, 2005; Tse and Bâki Iz, 2006, Ceylan, 

2009). According to the notations of Figure 4 we get:  

dN =ϑ ds                                                                                            (22)  
where ϑ is the Pizzetti-type deflection of the vertical in the 

azimuth α. Between any points P1 and P2 the geoid height change 

is: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ΔN12 = ∫ ϑ(s )
𝑝2

𝑝1
𝑑𝑠                                                                           (23) 

If Pi and Pk are close together and ϑ(s) is a linear function between 

these points the integral (23) can be evaluated by a numerical 

integration (Völgyesi 1998; Tóth, Völgyesi 2002): 

𝑁𝑝2
− 𝑁𝑝1  = (

ξ1+ ξ2

2
cos α12 +

η1+ η2

2
sin α12) 𝑆12           (24)         

According to equation (3) 

∆𝑁𝑝1𝑝2
= (

Φ1 – ϕ1 + Φ2 – ϕ2

2
cos α12  

            +
(Λ1 – λ1) cos ϕ1 + (Λ2 – λ2) cos ϕ2

2
sin α12) 𝑆12                (25)         

To estimate the accuracy we assume that: ϕ𝑚 =
ϕ1+ϕ2

2
 

∆𝑁𝑝1𝑝2
= (

Φ1 – ϕ1 + Φ2 – ϕ2

2
cos α12  

                +
(Λ1 – λ1) cos ϕm + (Λ2 – λ2) cos ϕm

2
sin α12) 𝑆12          (26)         

As            
ϕ1

2
+

ϕ2

2
= ϕ1 +

ϕ2−ϕ1

2
                                                

                                 = ϕ1 +
∆ϕ12

2
                                                    (27)          

And 

                  
λ1

2
+

λ2

2
=  λ1 +

∆λ12

2
                                                      (28)         

∆𝑁𝑝1𝑝2
= ((

Φ1 + Φ2 

2
−

ϕ1 + ϕ2

2
)cos α12  

                +(
(Λ1+Λ2)   

2
−

λ1+λ2

2
)cos ϕm sin α12) 𝑆12                (29)         

As there is only point positioning in astronomy, accuracy of 

error of  
Φ1+ Φ2 

2
  depends only on accuracy of Φ1 and Φ2 , but 

in GPS accuracy of relative positioning is more than point 

positioning. So from equations (27), (28) and (29): 

                  

∆𝑁𝑝1𝑝2
= ((

Φ1 + Φ2 

2
−(ϕ1 +

∆ϕ12

2
))cos α12  

                +(
(Λ1+Λ2)   

2
− (λ1 +

∆λ12

2
))cos ϕm sin α12) 𝑆12     (30)         

 

So from determined geodetic azimuth and geodesic distance from  

equations (18) and (19), ∆N12  can be computed. After that from 

the equation ∆H12= ∆h12 -∆N12, surveyors can determine ∆H12 and 

due to known entrance point height, by using the equation ∆H12= 

H2- H1, exit point height is computable. 

 

 

Figure 4. Basic principle of astronomical levelling 
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As an example for mentioned equations, in Kerman tunnel 

according to table 1, estimated ∆𝑁 was 2.13 m. Baesd on 

accuracy of astronomical point positioning and Gps about 0.2‟, 

if we assume that the maximum error for ξ and η is 0.4‟, when  

we change this value for ξ and η, the ∆𝑁 value change below 

5 cm, that is acceptable for administrative project. Morever, 

Length between entrance and exit point is the important factor 

that cause error, For instance, in above example for Kerman 

tunnel, if we assume 3 km instead of  38 km for tunnel length, the 

error will change in under 1 cm. 

 

 

Table 1. Kerman tunnel parameters 

 

1.4 Correction in gyro-theodolite 

1.4.1 Geodetic correction 

The quality of geodetic networks for guiding Tunnel inside long 

tunnels depends largely on the correct use of a gyroscope. The 

gyroscope theodolite or gyro-theodolite has a built-in free swing 

and fast rotation gyroscope that vacillates automatically provides 

astronomical azimuth (Lambrou and Pantazis, 2004). But the 

determined azimuth with gyro-theodolite is less accurate than the 

determined azimuth by astronomical methods. 

So to control and check the accuracy of azimuth determined by 

gyro-theodolite, astronomical observation and gyro-theodolite 

observations should be compare. By the comparison, the 

necessary geodetic correction can be applied to gyro-theodolite 

results. the following corrections must be applied to reduce such 

observations to grid bearings: 

A. Correction for polar motion (actual pole to CIO pole) 

B. Arc to chord correction 

C. Convergence of the meridian 

D. Instrumental corrections 

E. Correction for the deflection of the vertical 

That astronomical observation in relation to items (A), (D) and 

(E) can help surveyor engineers to apply the correction. 

The following details can be added concerning these corrections: 

 

1.4.1.1  Polar motion 

The earth rotation axis will not remain fixed with respect to the 

earth body, rather move periodically around a certain mean axis. 

Such movement of the earth rotation axis is called Polar motion. 

Due to polar motion, it is important to reduce all observations so 

they refer to a certain mean pole. The most widely used mean 

pole is the International Convention of Origin (CIO), which is 

defined as the mean position of the instantaneous pole during the 

period 1900 to 1905.However, the deviation between an arbitrary 

rotation axis and the rotation axis corresponding to CIO is less 

than 0.1 mgon and therefore this correction is neglected (Lewén, 

2006). 
 

 

1.4.1.2    Arc to chord correction 

The arc to chord corrections is applied by reference to formulae 

of the projection concerned. This correction is negligible for short 

distances. 

1.4.1.3  Convergence of the meridians 

Bearing of theodolite telescope will vary from point to point 

(Lewén, 2006). Thus as one proceeds along a straight line set out 

by a theodolite on the earth’s surface, the bearing of the line will 

not remain constant but will gradually alter. In latitudes in the 

neighbourhood of 60,̊ the alternation amounts to almost a minute 

of arc in a line of one kilometre in lengths, and in higher latitudes 

the alteration is even bigger. 

When one is using a gyro, the above stated problem is reversed. 

A gyro will in fact seek out and eventually settle in a meridian 

(true north) but when one wants to implement the gyro 

observations on a predefined map grid one has to keep in mind 

that the observed meridian only coincides with the map grid 

along the middle meridian of the map grid. The further east or 

west one gets from the middle meridian the larger the deviation 

between direction of North of the map grid and the meridian of 

longitude that the gyro shows. 

This deviation (c) may be calculated using the following formula: 

Tanc = tan (λ −λ) ∗sinϕ                                                               (31) 

Where: 

ϕ = latitude of gyro position, λ = longitude of gyro position 

λ0= longitude of the middle meridian of the map grid system 

 

1.4.1.4 Instrumental corrections 

An alignment error can exist between the indicated heading of 

the gyroscope and the horizontal optical axis of the theodolite. 

This constant error can be determined at a measuring range where 

the azimuth is known. 

1.4.1.5   Correction for the deflection of the vertical 

The influence of the irregularity of the earth’s gravitational field 

(deflection of the vertical) thus merits special attention in regions 

where the deviation of the vertical is suspected to be large. 

A study of this problem has been carried out for the St Gotthard 

and Lötschberg tunnels (Carosio et al., 1997). Because of the 

length of the tunnels, gyroscopic observations are needed in 

addition to conventional methods. However, in a mountainous 

area such as the St Gotthard range, the effects of the variation of 

the earth’s gravitational field are not negligible. Experiments 

have thus been carried out on the effects of such variations on 

gyroscopic azimuths. The instrument that was used in these 

experiments was the Gyromat 2000 supplied by Deutsche 

Montan Technologie (DMT) of Bochum. This instrument has a 

measuring time of 8 minutes, with a nominal precision of 0.7 

mgon. 

The application of this correction allows an astronomical azimuth 

to be converted to geodetic azimuth, as follows (Heiskanen and 

Moritz, 1967): 

A =α –η tanφ − (ξ sinα –η cosα) cot z                                    (32) 

Where: 
A is the astronomical azimuth 

α is the geodetic azimuth 

η is the east-west component of the deflection of the vertical 

ξ is the north-south component of the deflection of the vertical 

φ is the geographical latitude 

z is the zenith distance to the observed point 

In the case of a tunnel, where the lines of sight are approximately 

horizontal, cot z = 0, will only the η component of the deflection 

account to the correction. 

 𝛟 𝛌 𝚽 𝚲 𝛏 𝛈 

A 
29 ̊20ˊ 

24.17169‟ 
56 ̊57ˊ 

10.07054‟ 
29 ̊20ˊ 34‟ 56 ̊57ˊ 12‟ 10‟ 2‟ 

B 
29 ̊41ˊ 

05.32196‟ 

56 ̊58ˊ 

57.17907‟ 
29 ̊41ˊ 18.3‟ 56 ̊59ˊ 03‟ 13‟ 5‟ 

 𝑆12=38.3238km α12= 04 ̊18ˊ 33.8‟ 

∆𝑵𝒂𝒃 2.13 m 
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   Conclusion 

   This study presented functions for the determination of ∆H  

between entrance and exit point of tunnel and opened new 

perspective for guiding long tunnel and geodetic correction and 

calibration of gyro-theodolite based on astro-geodetic method. In 

spite of fact that the geometric levelling is time consuming, 

astronomical can be accomplished in a much shorter time 

interval. Using astrogeodetic cost in guidance of tunnel with a 

higher and more valuable amount information and quality. Th 

shortened surveying can be, by itself, a major advantage in most 

cases and can also be a decision issue. Furthermore By 

astronomical methods, azimuth of directions can be determine 

with an accuracy of 0.5 arcsecond, whereas, nowadays, no 

gyroscope can measure the azimuth in this accuracy. 

Morever, If gyro observation are to be used in an adjustment to 

improve the network, it is very important that the observations 

are checked within themselves, i.e.that all corrections are applied 

and that the surveying and computation methods are such that the 

influence of gross and systematic errors are minimized. 
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