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ABSTRACT: 
 
Considering the problem in monitoring agricultural condition in the semi-arid areas of Northwest of China, we propose a new 

method for estimation of crop planting area, using the single phase optical and microwave remote sensing data collaboratively, 

which have demonstrated their respective advantages in the extraction of surface features. In the model, the ASAR backscatter 

coefficient is normalized by the incident angle at first, then the classifier based on Bayesian network is developed, and the VV, VH 

polarization of ASAR and all the 7 TM bands are taken as the input of the classifier to get the class labels of each pixel of the images. 

Moreover the crop planting areas can be extracted by the classification results. At last, the model is validated for the necessities of 

normalization by the incident angle and integration of TM and ASAR respectively. It results that the estimation accuracy of crop 

planting area of corn and other crops garden are 98.47% and 78.25% respectively using the proposed method, with an improvement 

of estimation accuracy of about 3.28% and 4.18% relative to single TM classification. These illustrate that synthesis of optical and 

microwave remote sensing data is efficient and potential in estimation crop planting area. 

 

1. INTRODUCTION 

Agriculture is the basis of China's national economy, 

agricultural information monitoring is important for 

agricultural production, it is the basis for national socio-

economic information of the people's livelihood [1]. 

Estimation of Agricultural crop area is one of the key 

technologies to monitor the agricultural situation, the 

traditional methods is based on a sample survey which is 

human-based, point-based data. It spends a lot of money 

and has the low efficiency. The survey result is easily 

influenced by human factors. Based on the principle of 

electromagnetic waves emitted or reflected from an 

object on earth observation technology, Remote sensing 

technology can provide long-lasting surface information 

frequently, with macro, dynamic and accurate monitoring 

of the changes of the surface environment. so the use of 

remote sensing to establish an objective, dynamic, real-

time, low-cost crop area estimation method is very 

significant. 

Currently, the theory of estimating crop acreage by 

remote sensing data is mainly based on the spectral 

theory of green plants, using multi-temporal Landsat 

remote sensing data (Landsat TM) and very high 

resolution remote sensing data Meteorology (NOAA / 

AVHRR), methods there are greenness - phase - area 

mode, visual interpretation calculation method, the 

combination of remote sensing and statistical methods, 

combination of geographic information systems and 

remote sensing methods [2-4]. The United States is the 

world's first country to estimating crop area by remote 

sensing in 1974 through the "large-scale crop yield 

estimation experiment" (LACIE), Landsat MSS was used 

on wheat acreage estimation with precision up to 90% [5]. 

Since 1988, the European Union carried out monitoring 

the EU's arable land, crop acreage and production using 

remote sensing technology through the MARS program, 
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and the monitoring results were used for the verification 

of the declaration of agricultural subsidies and the reform 

of the Common Agricultural Policy [6]. China also 

actively carried out the work of Agricultural Remote 

Sensing. In 20 mid-1980s, the National Meteorological 

Administration estimated the production of northern 

winter wheat by NOAA / AVHRR satellite remote 

sensing yield over 11 provinces, the standard methods of 

estimating crop acreage by remote sensing is established 

[7]. Fang Hongliang [8] used supervised classification 

and unsupervised classification to extract for rice 

planting area by TM satellite data, the accuracy is more 

than 84%. Wu Bing-Fang [4] built 'Chinese Agricultural 

Information of Remote Sensing Systems' in 1998, the 

system used remote cluster sampling and ground surveys 

of combining methods to estimate crop acreage,  the crop 

acreage for bulk extraction accuracy was over 95% in 

nationwide. 

The above-mentioned method requires more 

temporal optical remote sensing data, and optical data is 

easily influenced by weather, atmospheric conditions in 

the study area are higher, we are often difficult to obtain 

a high-quality crop growth phase continuous data. The 

radar data can pass through clouds and fog, with the all-

time, all-weather characteristics, information from 

different perspectives reflects surface characteristics. If 

we combine the optical and radar data together to extract 

surface information, it is great significant for improving 

the extraction accuracy of crop area.  

Based on this consideration, we propose a single-

phase optical radar remote sensing of crop acreage 

synergistic extraction method.  At first, the  incidence 

angle of ASAR data is normalized, the backscattering 

coefficient were corrected in the same incident standards; 

and then a Bayesian networks is build, training areas 

were selected.  ASAR dual polarization and TM7 bands 

were the input data as classification, based on the 

classification results to extract crop acreage. With the 

support of the measured data, we verified the results. 

2. Normalization of the ASAR backscattering 

coefficient by the incident angle 

The incident angle of SAR influences the signal 

intensity very much. Backscattering coefficient of the 

same object is different at vary incident angles, the 

discrepancy in vary situation (such as bare ground or 

vegetation-covered areas) shows unlikeness, which is not 

conducive to the land surface classification. So in order 

to make the surface objects under the uniformity incident 

angle standards and compare them, we normalized the 

ASAR backscattering coefficient by its incident angle.  

2.1  Extrapolation of the optimal incident angle θj for 

Normalization  

   If the range of incident angles are (θ1, θ2) in a SAR 

image, we need to find a θj ,which makes the changes of 

backscattering coefficient of each pixels after 

normalization minimized. 

   By the Taylor formula, it is possible to extrapolate the 

SAR backscattering coefficient to the optimal angle θj, 

As θ Є (θ1, θ2), the error Er for choosing θj as the optimal 

angle can be written as: 
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Because the common factor θ2-θj and θj-θ1 can be 

extracted from ξ2 and ξ1 respectively, when θ2-θj =θj-θ1, 

the formula (2) can only be solved, and the solution is θj 

= (θ1 + θ2)/2 

Previous researches [9] show that the land 

vegetation coverage affects the SAR backscattering 

coefficient slightly when NDVI<0.45 in C bands, and the 

backscattering is mainly composed by direct scattering 
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from bare ground. On the contrary, when NDVI>0.45, 

the direct scattering of bare ground is less, and the 

vegetation scattering plays a leading role. Therefore, it is 

necessary to normalize the SAR backscattering 

coefficient in bare ground and vegetation-covered areas 

respectively.    

2. 2  Normalization in bare ground or sparse vegetation 

areas 

From the previous researches [10], we know that the 

simulations of AIEM (Advanced Integral Equations 

Model) are identical with the field measurements, so 

AIEM is used to estimate the backscattering coefficient 

in different surface roughness, soil moisture content, and 

incident angles in bare soil or sparse vegetation. The 

single backscattering coefficient σpq is given by:  
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Where k1 is the wave number in medium 1; s is RMS 

height; Wn(ksx-kx, ksy-ky) is the roughness spectrum of the 

surface related to the nth power of the surface correlation 

function by the Fourier transforms. kz = kcosθi; ksz = 

kcosθs; kx = ksinθicosφ; ksx = ksinθscosφs; ky = ksinθisinφ; 

ksy = ksinθssinφs; φ is the incident azimuth angle; θs and 

φs are the scattering angle and scattering azimuth angle, 

respectively; Ipq
n is a function of θi, φ, θs, φs, εs, s and the 

Fresnel reflectivity.  

The input parameters of AIEM are εs which is 

calculated by the surface soil moisture mv and soil texture 

[11], θi , s, correlation length (l) and the surface 

correlation function ρ(x), which is determined by 

analyzing the surface profile of each site. 

In this paper, the simulated inputs of AIEM are set: 

C band, VV polarization, and the other input parameters 

are as follows (Table 1): 

 

Table 1 The input parameters of simulation by AIEM 

Inputs Min Max Step Unit

Soil Moisture mv 5.0% 40.0% 3.0% g/cm3

RMS height s 0.1 4.0 0.25 cm 

Correlation length l 5.0 25.0 2.5 cm 

Incident 

angle θi 
15 45 3 ° 

 

By analysis of the simulation results, we find 

when the roughness is small((s < 2 cm), there are obvious 

correlation between the backscattering coefficients (σ(θm) 

and σ(θn)) in different incident angles (θm and θn), There 

is a good liner relationship between σ(θm) and σ(θn), but 

the relationship is unreliable when the (|θm-θn|) rises, if 

we try to directly establish the linear relationship 

between σ(θi) (θi Є [15°, 45°]) and σ(θj) (backscattering 

coefficients at optimum angle θj), it may cause large 

errors, which shows in Fig.1: 

 

Figure. 1  Linear simulation between σ(θj) and σ(θi), θi Є [15°, 

45°]), step 3° 

Then, according to the influence of the incident 

angles, the cosine and sine of incident angles are adopted 

to develop the empirical relationship between σ(θj) and 

σ(θi), in this paper, θi Є [15°, 45°], the empirical formula 

can be written as: 

 
cos sin

( ) ( ) ln( )
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i i
j i

j j
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 

        (4) 

Where a, b and c are empirical coefficients, they 

changes when the rang of incident angles changes. In this 

research, θj,= (15°+45°)/2=30°. We can get the values of 

the empirical coefficients: a = 1.045, b = 11.82 and c = 
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0.004. Fig. 2 is the comparison of normalized 

backscattering coefficient σ(θi, 30°) and σ(30°) simulated 

by AIEM: 

 

Figure. 2 Comparison of normalized backscattering coefficient σ(θi，

30°) and σ(30°) simulated by AIEM 

In Fig. 2, the R2 is 0.9853, and RMS is 0.864dB, it 

reveals the normalization formula (4) can gain a good 

precision at a large range of incident angles (θi Є [15°, 

45°]).  

2. 3 Normalization in vegetation-covered areas 

   The water-cloud model [13] is introduced to simulated 

the backscattering in vegetation-covered areas. In the 

water-cloud model, The vegetation is represented as a 

homogeneous horizontal cloud of identical water spheres, 

the backscattering coefficient of whole canopy σcan is 

presented as the sum of the contribution of the vegetation 

σveg and the contribution of the underlying soil σsoil, 

which is attenuated by the vegetation layer. Multiple 

scattering between canopy and soil can be neglected. For 

a given incidence angle θi, the backscattering coefficient 

is represented in water-cloud models by the general form: 

2( ) ( ) ( ) ( )can i veg i i soil i                 (5)                   
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       (6)                           

  2( ) cos (1 ( ))veg i i iA                               (7) 

   Where γ2(θi) is the two-way transmissivity of the 

vegetation canopy, A and B are empirical coefficient 

determined by the vegetation type and the frequency of 

incident electromagnetic waves. 

In vegetation-covered areas, NDVI>0.45, the total 

backscattering mainly consist of the scattering 

contribution of the vegetation layer. If the underlying 

ground scattering σsoil(θi) is neglected, the γ2(θi) tends to 

0, so σcan(θi) = σveg(θi)=Acosθi. Then the normalization 

formula in vegetation-covered areas can be expressed as:  

cos
( ) ( )
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j

j i
i


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
                                 (8) 

Similarly, the formulas (4) and (8) also can be used at 

HH or cross polarization, so we can obtain the 

normalization formulas of SAR backscattering 

coefficient at all polarization state.  

2. 4 Classification method 

This paper presents a method based on integration of 

both active and passive remote sensing data for 

monitoring crop planting area. The experiment is carried 

out in Heihe river basin, a semi-arid area in the north-

west of china. This method takes good use of the 

advantages from both optical and microwave remote 

sensing. The flow chart of the soil moisture extraction 

scheme is given in Figure 3. 

 
Figure 3. The flow chart of our method 

3. Study area and database 

The measures reported in this study are conducted 

during the Watershed Airborne Telemetry Experiment. 

The study area locates in Grass Station of Lanzhou 

University in Zhang Ye district, Gansu province; it is a 

part of the low plain of Hexi Corridor. Its geographical 

coordinates are 39.25043°N, 100.005871°E, and the 
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altitude is 1385 meters. Land use mainly consists of 

country, bare salinized land, irrigative agricultural fields, 

small piece of desert and proluvium fan. The field 

experiment was conducted from June to July in 2008, at 

which time the main crops were corn, while wheat, clove, 

barley and other crops can also be found.  

Satellites over the study area provided TM and 

ASAR data on 7 July 2008 and 11 July 2008, 

respectively. ASAR (Advanced Synthetic Aperture Radar) 

is a synthetic aperture radar carried by the ENVISAT-1 

satellite and operates in the C-band (central wavelength 

5.63 cm), with multi-polarization, seven observation 

angles and five operating modes. In this study, we chose 

to use the ASAR data (product code ASAR_APP_1P), 

and the operating mode was Alternation Polarization 

corresponding to two kinds of polarization (VV and VH) 

and high space resolution (12.5×12.5 m per pixel).  

4. Results  

Two polarizations of ASAR (VV, VH) and all the 7 

bands of TM are taken as the input of the classification 

experiment, and the multisource images are resample to 

30m*30m and geometrically corrected. The study area is 

divided to 10 classes, which are bare farmland, corn, 

other corps, saline, desert, building, sand, water, 

mountain, woodland. When the training and validation 

samples are selected, using the method presented in 

Section 2.2.2, we can obtain the classification result 

which is shown in Figure.4  

 

Figure. 4 The Classification map of study area 

In Fig. 4, the basic distribution of oasis is consistent 

with feature of the dual ecological environment of 

western semiarid regions: ‘water always accompanied 

with oasis, desert accompanied with drought. 

We counted the classification of images and found 

that there were total 1, 008, 575 corn pixels，its planting 

area was 1, 008, 575 × 900 = 907,717,500 square meters, 

about 1,361,576 acres, nearly 18.16% of the entire study 

area. There were 153, 922 pixels for other crops, with an 

planting area 153, 922× 900 =138, 529, 800 square 

meters，about 207, 795 acres, nearly 2.77% of the entire 

study area. To verify the normalization formula (Eq. (8) 

and Eq. (12)) and the necessity of coupling optical radar 

data for classification, we respectively compared the 

output of the classification of ASAR and TM, using 

Bayesian network classifier, with the classification only 

by TM. Table 3 presents the statistical errors among the 

two methods. 

As shown in the Table 2 and Table 3, the accuracy of 

classification with single TM is low, and reaches a 

classification precision of 89.63%. When the dual 

polarization of ASAR data is jointed, the precision 

increases to 93.72%. The extraction accuracy of corn and 

other crops planted area by proposed method are 98.47% 

and 78.25%, with an improvement of estimation accuracy 

of about 3.28% and 4.18% relative to single TM 

classification. The reasons may be that the ASAR 
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information can increase the surface characteristics and 

make them easy to distinguish. For example, corn, other 

corps, garden and woodland are similar in spectrum, we 

can identify them by their various structural features 

caught by ASAR signals and finally obtain a better 

accuracy. Therefore, the above illustrate that the 

normalization and integrating optical and SAR data for 

classification are efficient and reliable 

Table 2. Classification by single TM 

classes corn 
other 

corps 
mountain others

corn 1983 308 89 131 

other corps 146 730 83 84 

mountain 61 147 469 98 

others 36 24 18 12327

sum 2226 1209 659 12640

a) Total precision 89.63%；Kappa coefficient 87.9% 

Table 3. Classification by combining TM and ASAR 

classes corn 
other 

corps 
mountain others

corn 2192 247 47 55 

other corps 34 946 9 16 

mountain 0 16 597 51 

others 0 0 6 12518

sum 2226 1209 659 12640

a) Total precision 93.72%, Kappa coefficient 91.07%. 

5. Conclusion  

      1) A new classification model for estimation of crop 

planting area by active and passive remote sensing data is 

developed in this paper. In the model, the ASAR 

backscattering coefficient is normalized by the incident 

angle, then a classifier based on the Bayesian theory is 

built up, ASAR and TM data are taken as the input of the 

classifier and the classification experiment is carried out, 

the validation by field measurements shows that: 

2) Compared with the Classification accuracy using 

single TM, the classification precision of integrating 

active and passive remote sensing data increases 4.09%, 

it shows comparing ASAR and TM data can present 

more information of the objects and increase the 

classification precision. 

3) The extraction accuracy of corn and other crops 

planted area by proposed method are 98.47% and 78.25%, 

with an improvement of estimation accuracy of about 

3.28% and 4.18% relative to single TM classification. 

The results shows the huge potential of crop acreage 

extracting by active and passive remote sensing data 
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