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ABSTRACT: 
 
Semi–natural areas are characterized by cultivated and natural areas with continuous transition zones. Especially in the alpine 
regions, this type of land-cover is predominant. The paper presents a method to classify semi –natural alpine areas by combining the 
spatial detail of orthophotos with the spectral information of SPOT satellite images. As case study, an alpine region in South Tyrol 
(Italy) has been considered. A four step approach is applied: (1) object delimitation, (2) object information assignment, (3) data 
mining and (4) classification. First, a segmentation procedure on orthophotos is used for an accurate delimitation of spatial objects, 
namely the segment. In a second step, spectral information from SPOT data as well as textural information from orthophotos are 
assigned to the segments. In a third step, those information are inserted in a data mining procedure, reducing the information to the 
most relevant ones for the next step based on classification. The classification procedure is mainly based on a decision tree approach. 
The main aim of this study was to compare the results from standard pixel vs. object-based classification approach by combining and 
considering different attributes (spectral, textures, topography) with decision tree approach and by comparing two classification 
approaches (maximum likelihood, decision tree). The study shows the potential of mapping semi–natural areas by combining high 
geometric detail (orthophotos) with spectral information of satellites images (SPOT). 
 
 

1. INTRODUCTION 

Grasslands and mountain meadows represent about 25% of the 
alpine vegetation. Most are semi–natural, having been 
influenced by centuries of low-key farming practices (European 
Commission, 2009). They often represent environmental 
sensitive areas with considerable variation in ground cover, 
ranging from humid areas, bogs, dwarf-shrubs, semi–natural 
grassland mountain pine and conifers with mosaic of extensive 
and intensive grazing land and mountain pasture. 
 
Detailed mapping and monitoring of these large areas by field 
surveys are generally difficult and expensive. Here, remote 
sensing (RS) techniques offers up-to date and cost effective 
opportunities by providing synoptic, objective and 
homogeneous data which can be geographically and temporally 
registered. Remote sensing can therefore be an efficient tool for 
providing standard, high quality information (Tsiligirides, 
1998). Especially in the last decades, a lot of satellite sensors 
have been launched with very high spatial and/or spectral 
resolution, delivering the opportunity of detailed land cover 
mapping at a scale of 1:5000. 
 
Pixel based classification approaches on high spatial resolution 
satellite images (e.g. SPOT, LANDSAT), however, often 
results in pixelised (salt and pepper) representation, which is 
even increasing when considering the new generation of very 
high spatial resolution data (e.g. IKONOS, QuickBird, 
GeoEye). In this context, object-oriented approaches (Baatz and 
Schäpe, 2000) have gained more and more interest, especially 
when dealing with very high spatial resolution satellite images.  
 
The object-oriented classification approach is based on image 
segmentation and usually performed as a pre-processing step. 
Therefore, the image is divided into semantically significant 

regions, also known as objects. In recent years, research in 
multi-scale or hierarchical segmentation approach has received 
a growing interest (Baatz and Schäpe, 2000; Guigues et al., 
2006). This research offers new opportunities, not only for 
analysis of the image at several different scales, but also for 
working with hierarchical structures, by setting objects in 
relation to neighbouring objects, or even to sub or super objects 
(multi-resolution segmentation). Object-oriented classification 
approaches have shown their potential for identifying and 
differentiating thematic aspects of the real world. A good, clear 
delineation is particularly achieved when dealing with the new 
generation of very high spatial resolution satellites images 
(Blaschke and Strobl, 2001; Schiewe, 2002; Benz et al., 2004). 
 
Oldeland et al. 2010 demonstrated the potential of high spatial 
resolution hyperspectral imagery for mapping semi–natural 
vegetation units. However, while the achived accuracy delivers 
promising results, flight campaign for the acquisition of these 
data are quite cost intensive. Baker et al. 1991 have shown that 
spectral classification alone out of SPOT HRV is not a suitable 
tool for mapping semi–natural cover types. The spectral 
identification is not always feasible (e.g. mountain pine and 
conifers) and even increases, when dealing with a lot of classes. 
 
Textural measurements, especially for very high spatial 
resolution, offer a new input of information. Textural related 
information can highlights this difference better than any 
spectral index. Haralick et al. (1973) defined 14 texture features 
that were derived from the GLCM among which six –angular 
second moment (ASM), contrast, variance, homogeneity, 
correlation and entropy – are considered to be the most relevant 
for remote sensing imagery analysis. GLCM stands for Grey 
Level Co-occurrence Matrix (also called the Grey Tone Spatial 
Dependency Matrix) and consist of a tabulation of how often 
different combinations of pixel brightness values (grey levels) 
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occur in an image. A precise definition of image texture is 
rather difficult to formulate. An often adopted description of it 
is the structure in the spatial variation of the pixel values (Rees, 
2001). Their information content depends on the type of image 
analysed with regards to the spectral domain, the spatial 
resolution and the characteristics of the sensed objects 
(dimension, shape and spatial distribution) (Kayitakire et al., 
2006). Several studies using textural classification inputs have 
already revealed the potential of textural derived information 
and its relative applications (Chen, 2004; Warner and 
Steinmaus, 2005; Kayitakire et al., 2006; Agüera et al., 2008). 
However, these studies focused on pixel-based, texture related 
classification approaches. Whilst these studies applied a fixed 
size mowing window approach, object based approaches gain 
their window size from the segmentation procedure, focusing 
afterwards on those significant regions (objects) and are 
therefore better able to obtain texture related information. 
 
Over the last many years, a number of classifiers, both 
parametric and nonparametric, have been developed for 
classification of remote sensing data. The Maximum Likelihood 
Classifier (MLC), a probabilistic classifier, has been widely 
used for classification of remote sensing data to produce both 
hard and soft classification outputs. However, practitioners of 
MLC frequently assume that the data follow Gaussian 
distribution, an assumption which may not be tenable in remote 
sensing images containing mixed pixels. Therefore, non-
parametric algorithms that use iterative procedures may be 
more appropriate than the statistical algorithms such as MLC 
(Xu et al., 2005). Quinlan See5 (Quinlan, 2003) software is one 
of those non-parametric algorithms, generating easily if –then 
rule sets out of decision tree. Several studies dealing with the 
decision tree have showed the potential of See5 for remote 
sensing applications as hard classifier (Landenburger et al., 
2008, XiaoPing et al., 2008, Punia et al. 2008, Ke et al. 2010). 
 
This study is based on previous work performed by the authors 
(Notarnicola et al., 2009). The added value of this study is 
mainly an accuracy improvement regarding the classes humid 
areas and mountain pine, the integration of orthophotos and a 
more intensive consideration of object based approaches and 
texture measurements.  
 

2. METHODOLOGY 

2.1 Study area 

 
Figure 1. : Study area in South Tyrol, Italy. 

 
The study site is located in South Tyrol, Italy (see Figure 1). 
The area of interest covers approximately 50 km² and is 

characterized by a plateau at an elevation of almost 2000m 
a.s.l., called “Villanderer Alm”. Different vegetation types and 
agricultural uses overlaps here continuously. The area is 
covered with vegetation, showing continuous transition from 
semi–natural grassland, dwarf-shrubs, humid areas, bogs, 
mountain pine and conifers. The agricultural use is restricted to 
mowing and grazing of grasslands and mountain pasture. 
 
2.2 Data used 

The data used for this study were two SPOT scenes from May 
2005 and September 2006 as well as orthophotos from 2006. 
Additionally, a digital elevation model (DEM) obtained from 
Lidar data of 2006 was considered. The initial very high spatial 
resolution DEM (2.5m) has been resampled to 10m to be 
consistent with the spatial resolution of SPOT data. As a 
reference map, a land-use classification covering whole South 
Tyrol with a minimum mapping unit of 1600 m2 is taken. For 
the area of interest a more detailed biotope map based on 
ground survey was available, focusing on the land use classes, 
humid areas, extensive and intensive grazing land. 
 
2.3 Pre-processing 

2.3.1 Georeferencing: The two SPOT scenes were 
georeferenced to the orthophotos by thin plate spline using PCI 
Geomatica with the DEM. This georeferencing procedure was 
necessary to guarantee a correct overlapping of the two SPOT 
scenes with the orthophotos, allowing afterwards a 
segmentation on orthophotos by combining the obtained 
segments with the spectral information of the SPOT scenes. 
 
2.3.2 Segmentation: The segmentation procedure was done 
by using a bottom-up segmentation approach of 3 levels, also 
known as multi-resolution segmentation (Baatz and Schäpe, 
2000) with Definiens Developer 8. 4 Layers for the 
segmentation procedure have been considered: three spectral 
bands (red, green, blue) from othophotos and an intensity band, 
delineated from  the orthophotos by using the transformation of 
Intensity, Hue and Saturation (IHS) calculated from the Red, 
Green , Blue (RGB) composition (Lillesand et al., 2004). The 
latter was mainly created to consider a kind of panchromatic 
layer with the whole spectral information out of the orthophotos 
containing the main textural information. The segmentation 
procedure was performed by creating 3 segmentation levels, 
starting with scale parameter 30 on level 1, 60 on level 2 and 90 
on level 3. In each segmentation step, different layer weightings 
were considered: 12 for the red band, 8 for the green, 4 for the 
intensity and finally 1 for the blue band. A weighting factor of 
only 1 was considered for the blue band as it was affected by 
noise effects. After having generated segmentation level 2, 
level 1 was deleted and level 2 was processed through a 
Morphology filter of Definiens. As parameterisation, the 
operation “close image objects” was considered with a width of 
8 while creating circles. This was necessary to smooth the 
objects and reducing the branched effects. Finally, level 3 was 
generated above level 2 for the relational object information 
while the segments of level 2 were considered for the following 
classification. 
 
2.3.3 Sampling: samples were  collected on the basis of the 
segments, generated on level 2 and interpreted visually taking 
into account the orthophotos and the detailed biotope maps as 
described in section 2.2. Only segments above or equal the area 
of 300 m2 were considered. For each class, at least 50 samples 
were collected. However, due to lower representation within the 
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area of interest, water surfaces and build-up areas had less than 
50 samples. After the selection of relevant samples, a split into 
test and train samples was done, by considering about 65% as 
train samples and 35% as test samples. In order to compare the 
effect of segment based classification with pixel based 
classification, the samples were afterwards rasterized to the 
resolution of the SPOT scenes. This conversion assured that the 
initial samples, generated on the spatial resolution of the 
orthophotos, fitted after the conversion to the spatial resolution 
of the SPOT scene. The amount of samples remained the same 
and allowed therefore a comparison of the results. 
 
2.4 Object information assignment 

The objects (segments) of level 2 were used as objects for 
information assignment. Three main types of object information 
were considered: (1) spectral, (2) textural and (3) topographic. 
Additionally to these features, the same object information 
were derived on the segmentation level above (level 3) and set 
in relation to level 2 by using customized relational feature in 
Definiens. Each segment was finally described by 380 
attributes. For level 2: 144 spectral, 40 textural and 6 
topographic. The same information were derived on level 3 and 
set afterwards in relation to level 2. 
 
2.4.1 Spectral: The spectral information was assigned to the 
segments, by considering the mean values of each band (SPOT 
and orthophotos). Additionally, more than 100 indices and 
ratios between the bands of the two SPOT scenes as well as the 
bands of the orthophotos with the two SPOT scenes were 
considered. These indices and ratios were defined in Definiens 
by using the customized arithmetic features.  
 
2.4.2 Textural: Texture measurements were assigned to the 
segments by considering nearly all available textures taken 
from Haralick (1979) in DEFINIENS and their four spatial 
directions (0°,45°,90°,135°). We used GLCM Homogeneity, 
GLCM Contrast, GLCM Dissimilarity, GLCM Entropy, GLCM 
Ang. 2nd moment, GLCM Mean, GLCM StdDev, GLCM 
Correlation, GLDV Ang. 2nd moment and GLDV Entropy 
(GLCM: Gray-Level Co-occurrence Matrix; GLDV: Gray-
Level Difference Vector). GLDV Mean and GLDV Contrast 
were not considered, as they were identical to GLCM 
Dissimilarity and GLCM Contrast, respectively (Laliberte and 
Rango, 2008). In order to reduce the number of textural 
information, only the maximum value of the mean value of a 
specific texture measurement of each given direction, was 
considered. The procedure was introduced into the process tree 
of DEFINIENS by defining a “zonal mean max” variable for 
each texture measurements. Therefore  the mean value of a 
specific texture measurement for each segment and for each 
given direction, was calculated. Finally, the maximum of the 
direction mean values for a give segment and for a given 
texture measurement was considered. The main expression used 
was the following: 
 
Variable = Texture (0°) 
If Texture (45°) > Variable then Variable = Texture (45°) 
If Texture (90°) > Variable then Variable = Texture (90°) 
If Texture (135°) > Variable then Variable = Texture (135°) 
 
2.4.3 Topographic: Topographic information were 
considered by using the Topographic Modelling Option in 
ENVI. We derived all possible parameters out of ENVI and 
considered therefore 6 additional topographic bands (Profile 
convexity, Plan convexity, Longitudinal convexity, Cross 

sectional convexity, Minimum curvature and Maximum 
curvature) on the basis of the DEM. The mean value of these 
topographic bands was considered for each segment and used as 
additional information. 
 
2.4.4 Object relational information: Finally, of all object 
information (spectral, textural and topographic) for level 2, 
object relational information were also generated by deriving 
the same information on level 3. These features were afterwards 
related to the segments of level 2, by using the customized 
object relational settings in Definiens. 
 
2.5 Classification 

The classification was done by investigating three different 
combinations and approaches.  
1) Comparison of a pixel-based and a segment-based maximum 
likelihood classification taking into account only the spectral 
information from the two SPOT scenes.  
2) Use of a decision tree classifier (See5) on segments (objects)  
taking into account all spectral information including indices, 
textural information as well as topographic information.  
3) Maximum likelihood approach based on a selection of 
attributes (spectral, textural, topographic) which have identified 
in step 2 as most promising for the classification.  
 
2.5.1 Pixel vs. segments: The results of two different layer 
stacks (pixel vs. segments) with a standard maximum likelihood 
classification were compared. Therefore, on one hand a layer 
stack of the two SPOT scenes was considered. On the other 
hand, each band was exported separately from Definiens by 
considering the mean value for the given segment. Those 
segment-based bands were afterwards also stacked. 
 
2.5.2 Decision tree: See5 is a decision tree builder, which 
generate classifiers called “rule sets”, that consist of unordered 
collections of (relatively) simple “if-then” rules. The rule sets 
are generated with the given attributes of the training samples 
and validated with the test samples. The Software See5 uses a 
statistical measure (e.g. an entropy) that tries to find the 
attribute with the most discriminatory power and then sets a 
threshold, which represents a node. This node contains only 
part of the data and can further be divided until an end node 
(leaf) is reached where no further splitting is possible or 
desired. To overcome the problem of decision trees as rather 
“weak” learners compared to parametric classifiers (maximum 
likelihood), a common strategy of boosting is used. The 
boosting approach uses a special set of weights for all training 
samples, by increasing the weight after each run for the 
misclassified samples and by decreasing it for the correct 
samples (Freund and Schapire, 1996). 
 
See5 performs a validation by classifying the test samples, 
comparing it with the original class and summarizes the result 
into a confusion matrix, which indicates the expected overall 
accuracy, user and producer accuracy. Furthermore, an 
information for each attribute is given in how many percent of 
rule sets the attribute was used. This gives an indication on the 
importance of the respective attribute to delimit the given 
classes. The generated rules sets can be applied to the segments 
as a hard classifier which results in a assignment to a given 
class including the information of the probability to belong to 
this class.  
 
Different settings regarding the sources of spectral information 
were compared: (1) orthophotos alone, (2) mono temporal 
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SPOT image or (3) the multi temporal SPOT approach. Within 
those main combinations, the improvement by considering 
spectral and/or textural and/or topographic information on level 
2 (L2) were analyzed. Additionally, the results when adding 
also the combination of object relational features out of level 3 
(+L3toL2) were compared. As classifier construction option 
rule sets of See5, 99 trials of boost was set. 
 
2.5.3 Decision tree vs. maximum likelihood: Finally, we 
compared a segment based maximum likelihood classification 
with a decision tree hard classification. Therefore, only the 
attributes which contributed to more than 90% of all rule sets in 
See5 were considered (19 out of 380, see Table 1). The 
maximum likelihood classification was done by exporting the 
suggested attributes out of Definiens as individual bands and 
stacking them afterwards. As train and test samples the samples 
mentioned in section 2.3.3 were considered. The decision tree 
hard classification was derived, by appending to each segment 
the predicted class as well the probability obtained from the 
rule sets. This was done by using free available script, called 
“See 5 Sam”. 
 

SEE5 attribute usage above 90% 
L2: SPOT 2006 GREEN /  SPOT 2006 NIR 
L2: SPOT 2006 NIR / SPOT 2006 RED 
L2: SPOT 2006 RED / SPOT 2006 NIR 
L2: SPOT 2006 RED - SPOT 2006 NIR 
L2:  SPOT 2006 SWIR / SPOT 2006 GREEN 
L3toL2: SPOT 2006 RED - SPOT 2006 NIR 
L3toL2: SPOT 2006 RED / SPOT 2006 NIR 
L3toL2: SPOT 2006 GREEN - SPOT 2006 SWIR 
L3toL2: Orthophoto RED / SPOT 2006 NIR 
L2: SPOT 2006 RED 
L2: SPOT 2006 GREEN - SPOT 2006 SWIR 
L3toL2: SPOT 2006 SWIR / SPOT 2006 GREEN 
L3toL2: SPOT 2006 NIR / SPOT 2005 RED 
L3toL2: SPOT 2005 RED - SPOT 2005 NIR 
L3toL2: SPOT 2006 GREEN / SPOT 2006 NIR 
L3toL2: SPOT 2005 GREEN - SPOT 2006 NIR 
L3toL2: SPOT 2005 GREEN / SPOT 2005 RED 
L3toL2: SPOT 2006 GREEN / SPOT 2006 SWIR 
L2: Orthophoto BLUE / Orthophoto RED 

Table 1. : See5 attribute usage above 90% when considering all 
possible 380 attributes. 

 
2.6 Results and discussion 

2.6.1 Pixel vs. segments: The accuracy assessment of the 
two classifications is shown in Table 2. A clear accuracy 
improvement is highlighted, when comparing pixel-based to 
segment-based classification. While considering a multispectral 
maximum likelihood classification, the segment-based approach 
reaches better results than the usual pixel-based approach. The 
improvement in accuracy is probably due to the aggregation of 
the spectral information to the segments, reducing so the effect 
of outliers and their misclassification. Beside the aspect of 
better accuracy, the spatial resolution improves notably, in this 
case from 10m spatial resolution up to 0.5m spatial resolution 
of the segments. Beside this aspect, a generalization is also 
already given. While the pixel based classifications still results 
in salt and pepper effects, the segment based result is already 
smoothed to relatively compact and homogenous classes. 

 
 

Class 
pixel-based segment-based 

PA UA PA UA 

Rocks 83.92 88.48 92.89 96.20 

Loose rocks 72.95 71.01 91.09 81.13 

Water bodies 95.94 84.02 74.59 100 

Humid areas 87.26 89.91 93.9 94.98 

Build-up areas 85.52 42.14 85.26 77.97 

Intensive grazing 96.84 95.52 99.12 97.15 

Extensive grazing 86.71 72.39 82.16 83.56 

Natural near grassland 74.66 92.03 89.73 91.16 

Dwarf-shrubs 75.51 67.73 85.48 78.68 

Conifers 81.15 88.23 94.61 90.05 

Mountain pine 85.04 83.57 86.87 94.72 

OA 0.83 0.90 

Kappa 0.81 0.89 
Table 2. : Main confusion matrix results of pixel-based vs. 
segment based classification (OA: Overall Accuracy, PA: 

Producer accuracy; UA: User accuracy). 
 
2.6.2 Decision tree: The differences in improvement while 
considering spectral information of (1) orthophotos alone, (2) 
mono temporal SPOT image and (3) the multi temporal SPOT 
are illustrated in Figure 2, Figure 3 and Figure 4, respectively. 
Considering only information on Segmentation level 2 are 
marked by “L2”. Considering additional data out of 
segmentation level 3 with object relational feature are marked 
by “+L3toL2”. The legend of the x-axis is given in Table 3. 
 

Meaning 
1 Spectral Bands 
2 Spectral Bands & Topographic 
3 Spectral Bands & Textures 
4 Spectral Bands & Topographic & Textures 
5 Spectral Bands & Indices / Ratios 
6 Spectral Bands & Indices / Ratios & Topogr. 
7 Spectral Bands & Indices / Ratios & Textures 
8 Spectral Bands & Indices / Ratios & Topogr. & Textures 

Table 3. : Legend of x-axis regarding the histograms. 
 

 
Figure 2. : Kappa Index tendency by considering only spectral 

information of orthophotos. 
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Figure 3. : Kappa Index tendency by considering only spectral 

information of SPOT 2006. 
 

 
Figure 4. : Kappa Index tendency by considering spectral 

information of SPOT 2005 and SPOT 2006. 
 
By comparing the different accuracies using orthophotos, one 
SPOT scene only and multi temporal SPOT classification, a 
clear improvement regarding all combination is given when the 
multi temporal SPOT approach is considered. 
 
Substantial improvement is given when spectral, textural and 
topographic information (see Figure 2, Figure 3 and Figure 4: 
(4) and (8)) are taken into account. On the other side, 
considering also all possible combinations of indices and ratios, 
is not really improving the result. The spectral bands 
themselves contribute already with most of the relevant 
information. Considering relational object information of only 
spectral bands  improves the accuracy (see Figure 2, Figure 3 
and Figure 4: (4) +L3toL2), more than considering all possible 
spectral combination (see Figure 2, Figure 3 and Figure 4: (8) 
L2). 
 
Textural and/or topographic information contribute to an 
improvement of the result (see Figure 2, Figure 3 and Figure 4: 
(2), (3), (4), (6), (7), (8)). Nevertheless, textural information are 
quiet process intensive, and topographic information only 
derivable when having an DEM. However, considering these 
two information in combination with spectral information from 
the orthophotos, yields in already quite satisfying results (see 
Figure 2: (4) L2, (8) L2). The results even improve when 
considering additionally object relation information ((see 
Figure 2: (4) +L3toL2, (8) +L3toL2).  
 
The minor effort to reach acceptable results is achieved by 
considering only spectral bands of multi temporal SPOT scenes 
(see Figure 4: (1) L2). Considering additional object relational 
information of the spectral bands (see Figure 4: (1) +LtoL2 ) 
can result in an accuracy, that can still compete with the result 
of other combinations while not having to take into account 
process intensive textural information, or topographic attributes 
which are related to a DEM. 

 
2.6.3 Decision tree vs. maximum likelihood: 
The main results of the confusion matrix regarding the 
comparison of the segment-based maximum likelihood 
classification vs. a decision tree hard classification are shown in 
Table 4. The attributes or derived spectral bands we used are 
shown in Table 1. 
 

Class 
maximum likelih-

ood decision tree 

PA UA PA UA 

Rocks 60.21 97.76 0.89 0.89 

Loose rocks 92.26 82.42 0.92 0.84 

Water bodies 96.67 32.36 0.56 1.00 

Humid areas 84.06 95.05 0.87 0.91 

Built-up areas 59.74 88.53 0.64 0.90 

Intensive grazing 98.84 91.75 0.98 0.94 

Extensive grazing 77.73 97.90 0.89 0.91 
Natural near grass-
land 98.01 92.99 0.97 0.91 

Dwarf-shrubs 96.43 83.78 0.90 0.90 

Conifers 97.38 89.76 0.95 0.95 

Mountain pine 87.36 97.37 0.91 0.92 

OA 0.90 0.91 

Kappa 0.89 0.90 
Table 4. : Main confusion matrix results of segment based 
maximum likelihood vs. decision tree classification (OA: 

Overall Accuracy, PA: Producer accuracy; UA: User accuracy). 
 
Regarding the two classification approaches, the results doesn’t 
differ so much. However, there is a slight improvement when 
considering the hard classification of the decision tree. This can 
be interpretive that hard thresholds, gained out of the rule sets, 
fits better for an differentiation of heterogeneous classes than 
cluster grouped classes gained out of the maximum likelihood 
classification. The reduction of outliers as well as wrong 
assignment of classes seems to be better reduced by hard 
classification thresholds, than by probability assignment of 
clusters. 
 

3. CONCLUSION 

The classification method applied here for semi–natural areas 
by combining the spatial detail of orthophotos with the 
spectrally information of SPOT satellite images, shows a high 
potential and improvements in classification procedures. 
Downscaling coarser spatial resolution with higher spectral 
information to higher resolution objects reduces salt and pepper 
effects and improves the accuracy. Furthermore, these 
procedures reflect better the given geometry by clear 
delineation and deliver vector products, ready to be directly 
incorporated into geographic information system (GIS). 
 
Considering only information from spectral bands already 
contributes to good results. Taking additional indices and ratios 
into account, improves the result slightly. A further 
consideration of additional textural, topographic and object 
relational information leads to a net improvement but is time 
consuming and creates high processing demands. A good result 
with lower workload can be achieved by combining  
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multispectral and multitemporal information from high 
resolution data (SPOT in this case) with segments from very 
high resolution data (orthophotos) and combining them with 
object relational information from a higher segmentation level. 
 
Problematic cases for classification are transition zones of 
overlapping classes (e.g. open conifers with natural near 
grassland misclassified as dwarf-shrubs) 
 
Further research can be dedicated by considering more than two 
SPOT scenes, higher amount of segmentation level and the 
setup of object relational information to the most suitable 
segmentation level. 
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