

Journa	al of The Remote	Sensing Society o
'RSS F		The Remote S
Available Issues Ja	apanese	
Author:	ADVAN	VCED Volume Page
Keyword:	Sear	ch 📃
	Add to Favorite/Citation Articles Alerts	Add to Favorite Publications

<u>TOP</u> > <u>Available Issues</u> > <u>Table of Contents</u> > Abstract

Journal of The Remote Sensing Society of Japan

Vol. 29 (2009), No. 3 p.459-470

[<u>PDF (2126K)</u>] []

A Generalized Satellite-based Method of Water Depth N Semiparametric Optical Model

<u>Ariyo KANNO¹⁾, Yukio KOIBUCHI KOIBUCHI²⁾, Wataru TA</u> <u>Masahiko ISOBE⁴⁾</u>

 2nd-year doctor's degree student at Course of Socio-Cultural an Environmental Studies, Department of Frontier Sciences, The Unive
Lecturer at Course of Socio-Cultural and Socio-Physical Enviro Department of Frontier Sciences, The University of Tokyo
Lecturer at Institute of Industrial Science, The University of Toky
Professor at Course of Socio-Cultural and Socio-Physical Envir Department of Frontier Sciences, The University of Toky

(Received April 14, 2008) (Accepted January 29, 2009)

Abstract

Shallow water depth is one of the important factors in science and c management. However, in-situ measurement is quite costly and time research efforts have provided a number of optically-based methods water depth distribution from satellite image, but they cannot proper heterogeneity in bottom sediment distribution because they require i assumptions or additional information on bottom reflectivity. It is the develop a method that can be applied more generally to water areas bottom material.

In any application of depth prediction methods, we need depth data validate the results. A leave-one-out cross validation technique enal for predictive model building without degrading the reliability of pre-From this standpoint, we present a new generalized method over th methodologies by utilizing depth measurement data.

In the new method, the bottom reflection term of the optical model nonparametric function of the depth-independent variables (bottom calculated from the brightness values of the pixels. In this way, the v by a semiparametric regression model. The ratios of the diffuse atter which are needed to calculate the bottom index, are optimized to mi Cross-Validation(GCV).

The new method is applied to 3 coral reef areas and artificially gene prediction accuracy is compared with those of the methods propos Stumpf et al., and Kanno et al. As a result, the new method is found accuracy in cases that enough depth-known pixels are available and apply well.

Keywords: <u>Depth Estimation</u>, <u>Semiparametric Regression</u>, <u>Nonuni</u> <u>Coral Reef</u>

[PDF (2126K)] [References]

Downlo

To cite this article:

Ariyo KANNO, Yukio KOIBUCHI KOIBUCHI, Wataru TAKE ISOBE: A Generalized Satellite-based Method of Water Depth Ma