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ABSTRACT 
 
The use of non-metric cameras in photogrammetric applications is considered under very strict constraints due to their instability and 
lack of fiducial coordinate system. Architectural building documentation, monuments registration, and monitoring structure 
deformations are very essential close-range photogrammetric applications that require high accuracy and quick data acquisition. 
Using metric cameras, in such situations, is quite uneconomic and non-metric cameras are in favor. In order to accelerate the 
processing time of analyzing non-metric cameras digital techniques are preferred.  
 
The aim of this research is to investigate the use of two inexpensive techniques for object reconstruction using digital images 
produced by non-metric cameras. The first technique employs an inexpensive 35mm camera and a cheap scanner, while a low-cost 
digital camera is used in the second technique. Both techniques are thoroughly evaluated and the RMS errors are investigated. 
Results show that the 6-paramter transformation model is the best model to handle geometric errors introduced by scanners. The 
object reconstruction process results show that sub millimeter accuracy, in object coordinates, can be achieved if systematic errors 
are considered. 
 
 

1. INTRODUCTION 
 
The basic task of many photogrammetric systems is to derive 
object space coordinates from 2D images.  Analog, semi-
analytical, and analytical techniques have been employed for 
a long period of time in photogrammetry to extract ground 
coordinates of objects from hardcopy images. In recent years, 
digital techniques are implemented in photogrammetric 
applications. The advantages of using digital techniques are: 
the ease and speed of data acquisition, the inherent on-line 
and real-time capabilities, and the high degree of automation. 
Acquiring digital images is done either by scanning hardcopy 
images or by capturing the photographs directly in digital 
format using digital sensors.   
 
The aim of this paper is to investigate the process of 
capturing ground features digitally through one of the 
following schemes: scanning hardcopy images produced by 
non-metric 35mm cameras or acquiring digital images 
directly using non-metric digital cameras. Each technique is 
evaluated and analyzed using a number of mathematical 
models that relate image space coordinates with ground 
space coordinates. The implemented mathematical models 
were adapted to handle the systematic errors produced by 
non-metric cameras.   
 
 

2. PREVIOUS WORK 
 
In (Boron, 1996) the accuracy of the UMAX 1200 scanner is 
investigated; the correction method he proposed reduces the 
scanning errors from ±5 pixels to ±0.15 pixels. The 
correction is executed in two stages. First order corrections 
are found for each point in the scanner plate first then the 
second order corrections for each run are determined. In 
(Bolte et. al., 1996) both the geometric and radiometric 
properties of the scanners were studied. The RM -1 scanner 
was used and it was found that its accuracy is equivalent to 
the analytical plotter.  
 

In (Karras and Mavrommati, 2001) the effects of the radial 
distortions in the 35mm cameras is studied. A number of 
approaches, ranging from the utilization of linear features to 
the rectification of regular grids, were used. It was shown 
that ignoring the radial lens distortion increases the RMS 
errors dramatically. In (Cruz et. al., 2000) the inner 
orientation of non-metric cameras was investigated. The 
35mm camera images were scanned at 600 dpi and 1200 dpi. 
A comparison between the 6-parmeters and 4-parameters 
coordinate transformation models showed that the former 
transformation model is better than the later.  
 
In (Seedahmed and Schenk, 1998) a bundle adjustment with 
self-calibration scheme is presented for calibrating a high 
accuracy CCD digital camera.  An extended version of the 
collinearity equations was implemented with corrections for 
the symmetric distortion, the decentering distortion, the 
image plane unflatness, and the in-plane image distortion. 
The results showed the necessity to correct systematic errors. 
In (Zolfaghari and Malian, 2000) non-metric cameras are 
used to record architectural and historical buildings. The 
work shows the effectiveness of using non-metric cameras 
for capturing this type of features. 
 
Section 2 presents the calibration process of flatbed scanners. 
Section 3 summarize the mathematical models used to 
transfer image coordinates to ground coordinates. The object 
reconstruction process is presented in section 4. Conclusions 
are discussed in section5. 
 
 
 
 

2. GEOMETRIC CALIBRATION OF FLATBED 
SCANNERS  

 
During the scanning process, the positions of the scanned 
features are corrupted causing the distances between them to 
change. For cheap scanners, the distortions increase due to 
the bad functioning of the mechanical, optical, and electronic 



parts of the scanner. In this section different mathematical 
models are used to handle the geometric errors introduced by 
the scanners, the performance of each model is evaluated and 
the best model is remarked. 
 
2.1 Two-Dimensions Coordinate Transformations 
 
In order to study and compensate the introduced geometrical 
distortions in the scanning process we employed four 2D 
coordinate transformation models.  
 
In the first model, Equation (1), three parameters are used to 
represent two shifts and a rotation angle between the 
hardcopy coordinate system and the scanner coordinate 
system. In the second model one more parameter is added to 
consider the uniform scale between the two systems, 
Equation (2). The third model represents the 4-paramter 
transformation model. Six parameters are used to represent 
two translations, the rotation angle between the two systems, 
two different scaling factors, and a skew factor, Equation (3). 
The fourth model is the 8-paramter transformation model, 
Equation (4). A complete study on the 2D transformation 
models is discussed in (Mikhail et. al., 2001). 
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transformation model parameters. 
 

2.2 Experiment Setup 
 
Some experiments are performed to evaluate the scanning 
process as well as to choose the most appropriate model that 
minimizes the produced geometric distortions. The process is 
based on scanning a precise hardcopy image of known and 
accurate point coordinates, Figure 1. The measured 
coordinates are used as the reference coordinates for the 
hardcopy points. The experiment is performed with a 

4400CSE Howled Packard scanner. Two scanning 
resolutions were used (2400dpi, and 600dpi). 
  

 
 

Figure 1. Configuration of Reference Image 
 
The calibration process is summarized in three steps. First 
the scanned coordinates of all points are measured digitally. 
The points are divided to control points and check points.  
The control point coordinates are used to estimate the 2D 
transformation parameters for each 2D transformation model. 
Then the estimated parameters are used to convert the 
scanned coordinates of the check points to the hardcopy 
coordinate system. The RMS errors are calculated for each 
model and are shown in Figures 2. The Y direction 
represents the scanning direction. The results show that the 
6-parameter transformation model is the best model to 
recompense the geometric errors introduced by the scanners. 
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Figure 2. RMS Errors for the Scanning Process (Pixels) 
 
 
 
 

3. MATHEMATICAL MODELS FOR CLOSE 
RANGE PHOTOGRAMMETRY 

 
Due to the wider use of non-metric cameras for different 
photogrammetric purposes such as in registering 
archeological buildings, documenting historical writings, and 
recording historical buildings, there has been an increasing 
demand to calibrate non-metric cameras. Using non-metric 
cameras incorporate many problems, including:  
1-Non-metric cameras lack a stable inner orientation 
technique and irregular methods of calibration. 
2-Most non-metric cameras have neither a reseau plate nor 
fiducial coordinate system to act as a reference for 
photographic measurements. 



 
Due to these two disadvantages, the use of non-metric 
cameras in photogrammetric applications is considered under 
very strict constraints. However if non-metric cameras are 
calibrated properly they could be used in more applications. 
In section 3.1 a brief summary of the systematic errors 
introduced by the non-metric cameras is presented. Section 
3.2 describes the mathematical models employed to 
transform image space coordinates to the object space 
coordinates taking into account the effect of the systematic 
errors.  
 
3.1 Systematic Errors Introduced By Non-Metric 
Cameras 
 
“Systematic errors in non-metric cameras are the deviation of 
the physical imaging event from the projection mathematical 
model”, Karara (1989). There are two types of systematic 
errors; the external systematic errors, and the internal 
systematic errors. The sources of the external systematic 
errors are: the atmospheric refraction and the comparator 
errors. However, according to (Marzan and Karara, 1976) the 
atmospheric refraction errors are neglected for object 
distances less than 300 meters. The causes of the internal 
systematic errors are: the lens distortion, the film 
deformation, and film unflatness.  
 
Lens distortion is considered as the major source of errors for 
the non-metric cameras. Lens distortion is introduced by two 
components: symmetric lens distortion and asymmetric lens 
distortion. The adopted mathematical model for symmetric 
lens distortion according to (Brown, 1971) is given by 
Equation (5). 
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Where k1,k2,k3 = constants, 

           r = radial distance from the point of symmetry, and 
           ∆r = symmetric lens correction in the radial  direction 
 
The asymmetrical lens distortion is due to the lenses 
decentering. We employed the correction model presented by 
(Faig and Moniwa, 1972), Equations (6). 
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Where b1, b2 = constants, 

           r = radial distance from the point of symmetry,  
           x, y = point coordinates in image space, and 
           ∆x, ∆y = symmetric lens corrections 
  
The film deformation inside the camera is caused by bad 
flatness of the film. The film deformation outside the camera 
is due to lack of control over temperature, and the humidity 
during processing and storage of non-metric films. In 
(Robson, 1992) the 6-paramer transformation model is used 
to model the total film deformation. 
 
3.2 Transformation Between Image Coordinates and 
Ground Coordinates 
 
We employed four models to transform the image 
coordinates and the object coordinates. The first model is the 

collinearity representation with no systematic error 
correction parameters. Nine transformation parameters are 
included in this model. The second model is a modified 
version of the collinearity representation, 6 more parameters 
are added to handle the systematic errors, Equation (7). The 
third model is the DLT representation, (Abdel-Aziz and 
Karara, 1971). The fourth model is an adapted form of the 
DLT representation, Equation (8). The DLT is a linear 
treatment of a non-linear problem so its results are 
approximate. 
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Where f = camera interior parameters, 

   Xc, Yc, Zc = exposure station coordinates, 

   x, y = image space coordinates,  
   X, Y, Z = object space coordinates, 
  m
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= rotation matrix elements, 
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 Where x, y = image space coordinates,  

    X, Y, Z = object space coordinates, 
    l

1 
through l

11 
= DLT parameters, 

   r = radial distance from the point of symmetry, and  
           k

1
, k

2
  = systematic error correction parameters 

 
 

4. DIGITAL APPROACH FOR OBJECT SPACE 
RECONS TRUCTION 

 
Two object space reconstruction systems are presented in this 
paper. The first system employs a cheap 35mm camera, Zenit 
E, and an inexpensive flatbed scanner, while the second 
system uses only a low-resolution digital camera, Casio QV-
A10. First 50 target points are fixed as shown in Figure 3. 
The points are fixed on wood plates with different thickness 
varying from 5 mm to 10cm. A theodolite and a total station 
are employed to find the reference ground coordinates of the 
target points.  
 



 
 

Figure 1. Test Area Configuration 

 
4.1 Acquisition of Digital images from the 35mm camera 
and the scanner 
 
In this section the analog camera, Zenit E, was used together 
with the HP scanner to produce the digital images. First the 
camera was used to collect a number of image pairs with 
different B/H ratio, and these images are scanned with 
different resolutions. Sixteen well-distributed control points 
were chosen to solve the resection problem for each image. 
The intersection process is used to evaluate the experiments. 
Table 1 shows the different combinations of the B/H ratios 
and the used resolutions. Figure 3-a, b, and c show the RMS 
errors for the different experiments. 
 
Case  H (m) B (m) B/H Scanning Resolution (dpi)  

1 4 1 0.25 1200 

2 4 1 0.25 300 

3 4 3.9 0.97 1200 

4 5 3 0.6 1200 
 

Table 1. First System Configuration 
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 Figure 3-a. First System RMS Errors (mm), X Direction 
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Figure 3-b. First System RMS Errors (mm), Y Direction 
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Figure 3-c. First System RMS Errors (mm), Z Direction 

 
4.2 Acquisition of Digital Images Using The Digital 
Camera 

 
The digital camera was used to produce the digital images 
directly. The images were taken with B/H ratios shown in 
Table 3. The resection and intersection processes were 
applied to solve for the camera parameters and the ground 
coordinates of the target points. Figure 4-a, b, and c show the 
RMS errors for the different experiments using the digital 
camera. 
 
 
 

Case  H (m) B (m) B/H 
1 4 1 0.25 

2 5 3 0.60 

3 4 3.9 0.97
 

Table 3. Second System Configuration 
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Figure 4-a. Second System RMS Errors (mm), X Direction 
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Figure 4-b. Second System RMS Errors (mm), Y Direction 
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Figure 4-c. Second System RMS Errors (mm), Z Direction 

 

5. CONCLUSIONS  

1- The best mathematical model for the treatment of the 
geometric errors introduced during the scanning process is 6-
paramters transformation model. 
2- The (B/H) ratio must be considered during the imaging 
process in order to achieve similar accuracy in the X,Y,Z 
ground coordinates. 
 
3- The accuracy of the ground coordinates extracted from the 
digital images captured by scanning hardcopy images could 
reach sub millimeter accuracy with high quality scanning 
resolution (1200dpi) and good (B/H) ratio. 
 
4- The accuracy of the low resolution digital cameras could 
reach sub millimeter with good (B/H) ratio.  
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