中国腐蚀与防护学报 2007, 27(1) 31-34 DOI: ISSN: 1005-4537 CN: 31-1421/TG

本期目录 | 下期目录 | 过刊浏览 | 高级检索

[打印本页] [关闭]

论文

Ti6Al4V合金离子渗Mo组织结构及其腐蚀性能研究

范爱兰:秦妍梅:秦林:常大庆; 唐宾

太原理工大学

摘要:

利用等离子表面合金化技术在Ti6Al4V合金基体上制备渗Mo改性层,并与Ti6Al4V基材对比考察在 0 5 mol/L HCl溶液中的电化学腐蚀性能及在沸腾的37%HCl中的化学腐蚀性能.结果表明,与基材相比Mo改性层在0 5 mol/L HCl溶液中的自腐蚀电位提高,腐蚀速率增大;在37%HCl中腐蚀速率明显降低.

关键词: Ti6Al4V Mo改性层 腐蚀性能

Study on Structure and Corrosiion Behavior of Mo Diffusion Layers on Ti-6Al-4V Alloy with Plasma Surface Alloying Technique

;;;;

太原理工大学

Abstract:

The Mo surface modified layer on Ti6Al4V substrate was obtained by the plasma surface alloying technique. The structure and composition of the Mo surface modified layer were investigated by X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GDOES). The duplex Mo modified layer contains a pure Mo coating on subsurface and diffusion layers between the subsurface and substrate. The X- ray diffraction analysis of the Mo modified layer reveals that a Mo phase exists in the modified layer with $\langle 110 \rangle$ and $\langle 211 \rangle$ orientations in the subsurface. The electrochemical corrosion behavior in 0.5 mol/L HCl solution of the Mo modified layer was investigated and compared with that of Ti6Al4V substrate material. The chemical corrosion behavior in boiling 37% HCl solution of the Mo modified layer was investigated and compared with that of Ti6Al4V substrate material. Results indicate that self-corroding electric potentials and corrosion rate of the Mo modified layer are higher than those of Ti6Al4V substrate in 0.5 mol/L HCl solution. Corrosion rate of the Mo modified layer is lower than that of Ti6Al4V substrate material in 37% HCl.

Keywords: Ti6Al4V Mo modified layer corrosion behaviors

收稿日期 2005-08-12 修回日期 2006-01-24 网络版发布日期 2007-02-25

DOI:

基金项目:

通讯作者: 范爱兰

作者简介:

本刊中的类似文章

Copyright 2008 by 中国腐蚀与防护学报

扩展功能

本文信息

Supporting info

PDF(644KB)

[HTML全文](1KB)

参考文献[PDF]

参考文献

服务与反馈

把本文推荐给朋友

加入我的书架

加入引用管理器

引用本文

Email Alert

文章反馈

浏览反馈信息

本文关键词相关文章

- ▶ Ti6AI4V
- ▶ Mo改性层
- ▶腐蚀性能

本文作者相关文章

- ▶范爱兰
- ▶ 秦妍梅
- ▶秦林
- ▶常大庆
- ▶唐宾