半金属 Fe₃O₄薄膜的制备工艺探索

唐晓莉,张怀武,苏桦,钟智勇

电子科技大学微电子与固体电子学院,成都 610054

收稿日期 2005-4-28 修回日期 2005-9-30 网络版发布日期 接受日期

摘要 半金属材料 $\mathrm{Fe_3O_4}$ 是一种新型的功能自旋电子材料,由于其具有百分之百的自旋极化率而备受关注.但由于铁元素存在多种价态的氧化物,使得制备单一成分的 $\mathrm{Fe_3O_4}$ 非常困难,

因而本文着重对磁控反应溅射制备单一成分的 Fe_3O_4 薄膜进行了研究,探索了晶化温度对薄膜结构的影响,并通过引入缓冲层Ta对其性能进行改善,得到了反应溅射制备半金属 Fe_3O_4 的最优条件.另外,

通过对所制备的 Fe_3O_4 薄膜磁电阻效应的测试,发现多晶 Fe_3O_4 具有同单晶 Fe_3O_4 薄膜类似的负磁电阻效应,因此有望将其应用到自旋电子器件中.

关键词 <u>半金属材料</u> 自旋电子材料 Fe3O4薄膜

分类号 <u>0482</u>

Preparation of Half-metallic Fe_3O_4 Films

TANG Xiao-Li, ZHANG Huai-Wu, SU Hua, ZHONG Zhi-Yong

Institute of Micro-electronics and Solid-state Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China

Abstract Half-metallic magnetic material $\operatorname{Fe}_3\operatorname{O}_4$ is a new kind of spintronics material, which can provide 100% spin polarization. The Fe element has many electronic valences, so the pure $\operatorname{Fe}_3\operatorname{O}_4$ is difficult to prepare. Therefore, in this paper we mainly focused on finding the optimal way to fabricate pure $\operatorname{Fe}_3\operatorname{O}_4$ film. Half-metallic $\operatorname{Fe}_3\operatorname{O}_4$ films grown on Si (100) substrates were prepared by DC magnetron reactive sputtering. The annealing temperatures were investigated carefully, and the polycrystalline $\operatorname{Fe}_3\operatorname{O}_4$ films fabricated on Ta buffer layer shown better properties than the film directly sputtering on Si substrate. The optimum condition for the formation of polycrystalline $\operatorname{Fe}_3\operatorname{O}_4$ under DC magnetron reactive sputtering was found. The negative magnetoresistance of polycrystalline $\operatorname{Fe}_3\operatorname{O}_4$ was also tested, and showed a very weak saturation trend as the single-crystalline $\operatorname{Fe}_3\operatorname{O}_4$ films.

Key words <u>half-metallic material</u> <u>spintronic material</u> <u>Fe3O4 thin film</u>

DOI:

扩展功能

本文信息

- ▶ Supporting info
- ▶ **PDF**(374KB)
- ▶[HTML全文](0KB)
- ▶参考文献

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶复制索引
- ► Email Alert
- ▶文章反馈
- ▶浏览反馈信息

相关信息

- ▶ <u>本刊中 包含"半金属材料"的</u> 相关文章
- ▶本文作者相关文章
- 唐晓莉
- 张怀武
 - <u> 苏</u>桦
 - 钟智勇

通讯作者 唐晓莉 tangtang1227@163.com