SrO-CeO₂体系化合物的固相反应机理研究

符史流, 戴军, 丁球科

汕头大学物理系, 汕头 515063

收稿日期 2005-1-21 修回日期 2005-4-5 网络版发布日期 接受日期

摘要 以SrCO $_3$ 和CeO $_2$ 为原料,采用XRD和TG/DTA分析技术研究了SrO-CeO $_2$ 体系化合物的物相形成过程结果发现,当灼烧温度低于950℃时,原始粉料只反应生成Sr $_2$ CeO $_4$;而当灼烧温度高于950℃时,在反应的初始阶段,原始粉料中同时出现SrCeO $_3$ 和Sr,CeO $_4$ 物相,在950℃附近,主要产物为Sr $_2$ CeO $_4$,在1000℃以上,主要产物为SrCeO $_3$ 。SrCeO $_3$ 和Sr $_2$ CeO $_4$ 物相分别存在着两种形成机制,当温度高于1000℃时,SrCeO $_3$ 由SrO和CeO $_2$ 直接反应生成,而Sr $_2$ CeO $_4$ 则由SrCeO $_3$ 和SrO反应生成;当温度低于950℃时,Sr $_2$ CeO $_4$ 由SrO和CeO $_2$ 直接反应生成,而在950℃附近SrCeO $_3$ 则由Sr $_2$ CeO $_4$ 和CeO $_2$ 反应生成。依据这些实验结果,给出了SrO-CeO $_2$ 体系固相反应规律,并对SrCeO $_3$ 衍射数据JCPDS36-980的错误结果进行了分析。荧光光谱测试结果表明,Sr $_2$ CeO $_4$ 物相的形成机制对其激发光谱产生明显的影响。关键词 形成机制 SrCeO $_3$ Sr2CeO $_4$ SrO-CeO $_2$ 体系

Solid State Reaction Mechanism of SrO-CeO₂ System

FU Shi-Liu, DAI Jun, DING Qiu-Ke

Department of Physics, Shantou University, Shantou 515063, China

Abstract The solid state reaction process of the mixture of SrCO_3 and CeO_2 powders with different $\operatorname{Sr/Ce}$ ratios was studied by using XRD and $\operatorname{TG/DTA}$ methods. The results show that only $\operatorname{Sr}_2\operatorname{CeO}_4$ phase is formed for a firing temperature lower than $950\,^\circ\mathbb{C}$ while $\operatorname{Sr}_2\operatorname{CeO}_4$ and $\operatorname{SrCeO3}$ phases are simultaneously developed in the initial stages of the reaction for a firing temperature above $950\,^\circ\mathbb{C}$. In the initial stages of the reaction above $950\,^\circ\mathbb{C}$, the major product is $\operatorname{Sr}_2\operatorname{CeO}_4$ for close to $950\,^\circ\mathbb{C}$ and it becomes $\operatorname{SrCeO3}$ above $1000\,^\circ\mathbb{C}$. There are two types of formation mechanism for SrCeO_3 and $\operatorname{Sr}_2\operatorname{CeO}_4$, respectively. When the firing temperature is above $1000\,^\circ\mathbb{C}$, SrCeO_3 is formed directly by SrO and CeO_2 while $\operatorname{Sr}_2\operatorname{CeO}_4$ is created by SrCeO_3 and SrO . However, SrO and CeO_2 convert directly to $\operatorname{Sr}_2\operatorname{CeO}_4$ below $950\,^\circ\mathbb{C}$ and SrCeO_3 is produced by the reaction of $\operatorname{Sr}_2\operatorname{CeO}_4$ and CeO_2 for close to $950\,^\circ\mathbb{C}$. Based on these results, the reaction mechanism of $\operatorname{SrO-CeO}_2$ system is derived and the wrong results in the XRD data of SrCeO_3 (JCPDS36-980) have been clarified. The fluorescence spectra of $\operatorname{Sr}_2\operatorname{CeO}_4$ show that the formation mechanism has effect on its excitation spectra.

Key words formation mechanism SrCeO3 Sr2CeO4 SrO-CeO2 system

DOI:

扩展功能

本文信息

- ► Supporting info
- ▶ <u>PDF</u>(401KB)
- ▶[HTML全文](0KB)
- ▶参考文献

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶复制索引
- ► Email Alert
- ▶文章反馈
- ▶浏览反馈信息

相关信息

- ▶ <u>本刊中 包含"形成机制"的</u> 相关文章
- ▶本文作者相关文章
- 符史流
- 戴军
- 丁球科