1.3at%Nd:YAG透明陶瓷的制备及激光性能研究

李江1,2, 吴玉松1,2, 潘裕柏1, 安丽琼1, 章 健1, 王士维1, 郭景坤1

(1. 中国科学院上海硅酸盐研究所, 上海 200050; 2. 中国科学院研究生院, 北京 100049)

收稿日期 2007-1-15 修回日期 2007-3-16 网络版发布日期 2007-8-25 接受日期

摘要 以高纯氧化物商业粉体为原料,采用固相反应和真空烧结技术,制备了高质量的1.3at%Nd:YAG透明陶瓷. 研究了室温下Nd:YAG透明陶瓷的显微结构、光谱及激光性能. 实验结果表明,

Nd:YAG透明陶瓷主要以穿晶方式断裂; 平均晶粒尺寸为15μm, 且分布均匀;

晶粒中和晶界处没有检测到杂质和气孔存在,且成分一致,无偏析现象. 退火后样品在激光波长

1064nm处的透过率高达82.4%; 主吸收峰位于808.6nm处, 峰值吸收系数为4.45cm-1, 激光波长

1064nm处的吸收系数为0.11cm⁻¹; 主荧光发射峰位于1064nm处, 半高宽为0.82nm, 荧光寿命为258μs. 用LD端面泵浦Nd:YAG陶瓷样品(泵浦源最大输出功率为1000mW), 获得了波长为1064nm的连续激光输出, 激光阈值约530mW, 斜率效率为23.2%, 最大泵浦吸收功率为731mW时, 最大输出功率为45mW.

键词 Nd:YAG透明陶瓷 显微结构 光谱性能 激光性能

分类号 TQ174

Fabrication and Laser Performance of 1.3at%Nd:YAG Transparent Ceramics

LI Jiang^{1,2}, WU Yu-Song^{1,2}, PAN Yu-Bai¹, AN Li-Qiong¹, ZHANG Jian¹, WANG Shi-Wei¹, GUO Jing-Kun¹ (1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China)

Abstract High-quality 1.3at% neodymium-doped yttrium aluminum garnet (Nd:YAG) transparent ceramic was fabricated by a solid-state reaction method and vacuum sintering using high-purity α-Al₂O₃, Y₂O₃ and Nd₂O₃ as raw materials with tetraethoxysilane (TEOS) as sintering aid. The microstructure, the spectral property and the laser performance of the prepared Nd:YAG ceramic were studied. It is found that the sample exhibits pore-free structure with average grain size of 15μm. There is no secondary phase in the grain boundary and grain. Transmittance of the sample after annealing reaches 82.4% at the laser wavelength of 1064nm. The highest absorption peak is centered at 808.6nm and the absorption coefficient is 4.45cm⁻¹. The peak absorption coefficient at laser wavelength of 1064nm is 0.11cm⁻¹. The FWHM of 1064nm main emission peak is 0.82nm, and the fluorescence lifetime is 258μs. A laser diode (808nm) was used as pump source whose maximium output was 1000mW, and end-pumped laser experiment was demonstrated on 1.3at% Nd:YAG ceramic. The sample for laser testing is phi16mmtimes2.8mm in dimension, mirror-polished on both sides and without coating. With 731mW of maxiμm absorbed pump power, laser output of 45mW is obtained with slope efficiency of 23.2%. The laser threshold is 530mW.

Key words Nd:YAG transparent ceramic microstructure spectral property laser performance

DOI:

扩展功能

► <u>Supporting info</u>

本文信息

- ▶ <u>PDF</u>(606KB)
- **▶[HTML全文]**(0KB)
- ▶参考文献

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶复制索引
- ▶ Email Alert
- ▶文章反馈
- ▶浏览反馈信息

相关信息

- ▶ <u>本刊中 包含"Nd:YAG透明陶瓷"</u> 的 相关文章
- ▶本文作者相关文章
- · <u>李江</u>
- .
- · <u>吴玉松</u>
- * 潘裕柏
- 安丽琼
- 章 健
- 王士维
 - 郭景坤