中国有色金属学报

中国有色金属学报(英文版)

中国科学技术协会

🍾 论文摘要

中国有色金属学报

ZHONGGUO YOUSEJINSHUXUEBAO XUEBAO

第11卷 第3期 (总第42期)

2001年6月

[PDF全文下载] [全文在线阅读]

文章编号: 1004-0609(2001)03-0382-04

XD合成 $A1_20_3$, $TiB_2/A1$ 复合材料的热力学分析

朱和国 1,2 , 吴申庆 1 , 王恒志 2

- (1. 东南大学 材料科学与工程系, 南京 210096;
- 2. 南京理工大学 材料科学与工程系, 南京 210094)

要: 从热力学的角度讨论了原位反应生成 $\mathrm{Al}_2\mathrm{O}_3$ 和 $\mathrm{Ti}_2\mathrm{O}_2$ 陶瓷粒子增强铝基复合材料的合成机理。结果表明,在 $\mathrm{Al}_2\mathrm{Ti}_2\mathrm{O}_2\mathrm{O}_3\mathrm{D}_2\mathrm{D}_$ 的加热速率加热至1 073 K左右时,AI与Ti $\,0_2$ 之间首先发生铝热反应,反应产生出活性钛原子并形成AI-Ti-B反应系;AI $\,$ B $_2$ 和AI $\,$ 3Ti均系反应中间 产物 AIB₂在1 200 K左右时分解为AI和B,AI₃Ti被B还原,当B的加入量(摩尔)是TiO₂的两倍左右时,AI₃Ti基本消失,最终生成AI₂O₃和TiB₂陶瓷 颗粒增强的铝基复合材料。

关键字: 原位反应; 陶瓷粒子; 热力学

Thermodynamics analysis of Al₂O₃,TiB₂/Al composites fabricated by exothermic dispersion method

ZHU He-guo^{1,2}, WU Shen-qing¹, WANG Hen-zhi²

(1. Department of Materials Science and Engineering, Southeast University, Nanjing 210096, P.R.China;

2. Department of Materials Science and Engineering, Nanjing University of Technology, Nanjing 210094, P.R.China)

Abstract: The thermodynamics of in situ reaction from the reaction system of Al-TiO₂-B to form Al₂O₃, TiB₂/Al composites was studied. The results show that under the condition of certain heating rate, aluminum reacts with TiO2 firstly at 1 073 K and then forms Al-Ti-B reaction system. The phases of AlB₂ and Al₃Ti occur during the reaction process as mediproducts and the AlB₂ phase is decomposed into Al and B at the temperature of about 1 200 K, meanwhile, Al₃Ti is deduced by B to form TiB₂. When the mole ratio of B/TiO₂ is about two, the Al₃Ti phase is almost eliminated completely.

Key words: in-situ reaction; ceramic particles; thermodynamics

版权所有: 《中国有色金属学报》编辑部 湘ICP备09001153号

地 址:湖南省长沙市岳麓山中南大学内 邮编: 410083

电话: 0731-88876765, 88877197, 88830410 传真: 0731-88877197

电子邮箱: f-ysxb@mail.csu.edu.cn