文章编号:0253-9993(2013)08-1471-05

煤中苯硫酚型有机硫与 O, 反应机理

邓存宝1,戴凤威1,邓汉忠2,王雪峰1,高 飞1,张 勋3

(1. 辽宁工程技术大学 安全科学与工程学院,辽宁 阜新 123000;2. 辽宁工程技术大学 材料科学与工程学院,辽宁 阜新 123000;3. 辽宁工程 技术大学 矿业学院,辽宁 阜新 123000)

摘 要:为研究煤中含硫活性基团在煤炭自燃过程中的影响,利用 GaussianO3 程序,采用密度泛函 (DFT)方法,在 B3LYP/6-311G 水平下研究煤中苯硫酚型有机硫与 O_2 的反应机理。结果表明,此 反应主要有 6 条反应路径:Path 1 ~ 3 生成产物 SO₂,Path 2 的速控步骤反应能垒分别比 Path 1 和 Path 3 的反应能垒低 85.79 kJ/mol 和 135.94 kJ/mol;Path 4 ~ 5 生成产物 SO,Path 4 的速控步骤反 应能垒比 Path 5 低 142.46 kJ/mol,比 Path 2 的反应能垒低 6.52 kJ/mol;Path 6 的生成产物 HSO 的 反应势垒为 316.60 kJ/mol。因此,Path 4 为主要反应路径,产物 $P_2(C_6H_5OH+SO)$ 为主要产物,SO₂ 为次要产物,HSO 为最难生成的产物。

关键词:苯硫酚;反应机理;密度泛函

中图分类号:TQ530 文献标志码:A

The reaction mechanism of thiophenol type organic sulfur in coal with O_2

DENG Cun-bao¹, DAI Feng-wei¹, DENG Han-zhong², WANG Xue-feng¹, GAO Fei¹, ZHANG Xun³

(1. College of Safety Science and Engineering, Liaoning Technical University, Fuxin 123000, China; 2. College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, China; 3. School of Mines, Liaoning Technical University, Fuxin 123000, China)

Abstract: In order to study the influence of the sulfur active groups in coal during coal spontaneous combustion process, using the Gaussian 03 program, under the B3LYP/6-311G level, the reaction mechanism of thiophenol type organic sulfur in coal and O_2 was investigated by the density functional theory (DFT) method. The calculation results show that the reaction follows six reaction paths. Path 1–3 generate SO_2 , the rate-controlling step reaction energy barrier in Path 2 is 85. 79 kJ/mol and 135. 94 kJ/mol lower than that in the reaction Path 1 and Path 3 respectively. Path 4–5 generate SO, the rate-controlling step reaction energy barrier in Path 4 is 142. 46 kJ/mol lower than that in the reaction Path 5, and 6. 52 kJ/mol lower than that in the reaction Path 6 generate HSO, the reaction energy barrier is 316. 60 kJ/mol. Therefore, Path 4 is the main reaction path, $P_2(C_6H_5OH+SO)$ is its main product, SO_2 is secondary product, and HSO is the most difficult to generate product.

Key words: thiophenol; reaction mechanism; density functional theory

煤是一种具有芳香性的有机大分子。煤中有机 质主要是由碳、氢、氧、氮和硫等元素组成,煤中的有 机硫赋存形式主要有3种,分别为硫醇、硫醚和噻 吩^[1-2]。孙成功等^[3]利用程序升温法(TPR)研究煤 中有机硫的形态结构认为在褐煤中主要以脂肪族、芳 香族硫醇和硫醚为主,而在烟煤中主要以各种不同芳 构化程度的噻吩结构为主^[4]。从20世纪60年代开 始,很多科研工作者从煤结构模型着手研究煤炭自燃 机理^[5-7]。近些年,王继仁等^[8-10]采用量子化学原理,从不同角度研究了煤的活性基团对氧分子的物理吸附和化学吸附,研究结果表明,煤表面侧链基团对氧分子的吸附能大于苯环对氧分子的吸附能。郑楚光等采用量子化学原理研究了噻吩的热解机理^[11]。为研究煤中含硫结构单元在煤燃烧时的反应机理,笔者选取苯硫酚作为研究对象,采用 Gaussian03 程序研究其与 O₂ 的反应机理。

收稿日期:2012-07-26 责任编辑:张晓宁

基金项目:国家自然科学基金资助项目(50834002)

作者简介:邓存宝(1964—),男,山西大同人,教授,博士生导师。Tel:0418-3351702,E-mail:dengcunbao323@163.com。通讯作者:戴凤威 (1987—),女,辽宁辽阳人,博士研究生。Tel:0418-3351702,E-mail:daifengwei214@163.com

1 计算方法

全部计算利用 Gaussian03 程序进行。采用密度 泛函理论(Density Functional Theory, DFT),首先在 B3LYP/6-311G 水平下对反应物、产物、中间体和过 渡态分子进行了几何优化,对每一个驻点进行振动频 率分析,其中稳定构型的全部频率为正,而过渡态构 型有且只有一个虚频。然后,在同一水平下进行内禀 反应坐标(Intrinsic Reaction Coordinate, IRC)计算,确 认反应物、中间体、过渡态和产物的相关性,证明过渡 态的 正 确 连 接。在本 文 的 讨 论 中,将反应物 ($C_6H_5SH+O_2$)的总能量设为能量零点。

2 结果与讨论

对于煤中苯硫酚型有机硫与氧的反应,计算所得的各条反应路径(Path 1~6)为

Path 1: $R \rightarrow IM_1 \rightarrow TS_1 \rightarrow IM_2 \rightarrow TS_2 \rightarrow IM_3 \rightarrow TS_3 \rightarrow P_1$ Path 2: $R \rightarrow IM_1 \rightarrow TS_7 \rightarrow P_1$ Path 3: $R \rightarrow TS_9 \rightarrow IM_2 \rightarrow TS_2 \rightarrow$

$$IM_{3} \rightarrow TS_{3} \rightarrow P_{1}$$
Path 4: R $\rightarrow IM_{1} \rightarrow TS_{1} \rightarrow IM_{2} \rightarrow TS_{4} \rightarrow$

$$IM_{4} \rightarrow TS_{5} \rightarrow IM_{5} \rightarrow TS_{6} \rightarrow P_{2}$$
Path 5: R $\rightarrow TS_{9} \rightarrow IM_{2} \rightarrow TS_{4} \rightarrow IM_{4} \rightarrow$

$$TS_{5} \rightarrow IM_{5} \rightarrow TS_{6} \rightarrow P_{2}$$
Path 6: R $\rightarrow TS_{8} \rightarrow P_{3}$

其中包含了3种产物、5种反应中间体和9种过渡态。R表示反应物;P表示产物;IM表示反应中间体;TS表示过渡态。图1为反应物和产物的几何构型;图2为中间体和过渡态的几何构型。表1列出了反应物、产物、中间体和过渡态的总能量(Total Energies,TE)、零点振动能(Zero-Point Vibration Energies, ZPVE)及相对能量(Relative Energies,RE)。其中,相对能量(RE)=相对反应物的总能量-相对反应物的 零点振动能。

2.1 反应物的初始连接

煤炭自燃的论点与学说主要有:黄铁矿学说、细 菌作用学说、吸收水分发热学说、地壳运动导热学说、 煤自燃酚基作用学说、煤氧复合作用学说、自由基学 说等^[12-13]。大多数学者已经认识到,煤炭自燃发生

图 1 在 B3LYP/6-311G 水平下计算的反应物和产物的几何构型(键长单位:10⁻¹⁰ m) Fig. 1 Geometries of reactants and products at the B3LYP/6-311G level(Bond lengths:10⁻¹⁰ m)

图 2 在 B3LYP/6-311G 水平下计算的中间体和过渡态的几何构型(键长单位:10⁻¹⁰ m)

Fig. 2 Geometries of intermediate and transition states at the B3LYP/6-311G level(Bond lengths: 10⁻¹⁰ m)

的根本原因是吸收热量使煤升温。通过实验发现煤 从低温氧化到燃烧是一个吸氧放热的过程^[14-16],除 了煤中的含碳物质氧化放热外,还有煤的硫化矿物的 氧化、水对煤的湿润热、煤的有机物质和无机物质的 水解热、地应力和开采应力使煤破碎产生绝热空气的 压缩热等都会对煤的自燃升温过程起一定作用。因此,当煤得到足够的能量,反应物(C₆H₅SH+O₂)即可 发生复杂的多步反应(图3)。

intermediate, and transition states for the thiophenol			
($\ensuremath{ZPVE}\xspace$) , and relative energies ($\ensuremath{RE}\xspace$) of reactants , products ,			
Table 1 Total energies (TE) , zero-point vibration energies			
总能量(TE)、零点振动能(ZPVE)以及相对能量(RE)			
表1 苯硫酚与 O_2 反应的反应物、产物、中间体和过渡态的			

	and O ₂	kJ/mol	
种类	TE	ZPVE	RE
R	-2 049 721.93	272. 22	0
\mathbf{P}_1	-2 049 876.72	280.36	-162.92
P_2	-2 049 917.00	283.12	-205.97
P_3	-2 049 876.09	276.79	-158.73
IM_1	-2 049 661.64	277.94	54. 57
IM_2	-2 049 917.91	281.89	-205.65
IM ₃	-2 049 921.74	281.54	-209.13
IM_4	-2 049 857.85	283.54	-147.24
IM_5	-2 049 868.14	284.96	-158.95
TS_1	-2 049 550.87	268.84	174.43
TS_2	-2 049 917.48	280. 52	-203.85
TS_3	-2 049 667.35	269.24	57.56
TS_4	-2 049 759.23	277.78	-42.85
TS_5	-2 049 855.60	282.50	-143.95
TS_6	-2 049 708.10	270.62	15.43
TS_7	-2 049 491.65	267.03	235.47
TS_8	-2 049 407.24	270.31	316.60
TS_9	-2 049 414.03	263.29	316.84

图 3 在 B3LYP/6-311G 水平下反应势能面剖面 Fig. 3 Schematic profile of the potential energy surface at the B3LYP/6-311G level

煤中苯硫酚型有机硫与氧结合主要有 3 种方式: ① 两个 0 原子同时进攻 S 原子形成稳定的中间体 IM₁;② 两个 0 原子与 S 原子共同形成环状结构的过 渡态 TS₈;③ 两个 0 原子进攻 S 原子,但是,形成的是 一种不稳定的过渡态 TS₉。

2.2 反应路径分析

(1)苯硫酚氧化生成 SO₂ 的路径。

Path 1:反应物 R 吸热形成中间体 IM₁,这一过程 需吸收 54.57 kJ/mol 的能量(图 3)。从图 2 可以看 出,中间体 IM₁ 经过 H 原子的 S—O 邻位迁移形成更 稳定的中间体 IM₂,IM₁→IM₂ 中间经过过渡态 TS₁, 这一过程的势垒为 119.86 kJ/mol(图 3),中间体 IM₁ 很容易异构化为中间体 IM_2 。中间体 IM_2 经过一个 旋转过渡态 TS_2 很容易异构化为中间体 IM_3 ,由 $IM_2 \rightarrow IM_3$ 的势垒为 1.80 kJ/mol。中间体 IM_3 经过 S—C 键拉长的过渡态 $TS_3(S$ —C 的键长为 2.238× 10^{-10} m),同时 H 原子在 O—C 之间的迁移,得到产 物 P_1 , $IM_3 \rightarrow P_1$ 的势垒很高(266.69 kJ/mol),在反应 路径的竞争中处于劣势。

Path 2 和 Path 1 这两条反应路径的主要区别是 从中间体 IM₁ 出发经过不同的过渡态分解为产物 P₁。在 Path 2 中,中间体 IM₁ 经过 H 原子的 S—C 邻 位迁移形成较稳定的产物 P₁,由 IM₁→P₁ 中间经过 过渡态 TS₇,这一过程的势垒为 180.90 kJ/mol,与 Path 1 中的过渡态 TS₃ 相比更容易产生。

Path 3:反应物 R 中的 S 原子与 O_2 分子结合,经 过过渡态 TS₉,得到中间体 IM₂,由 R→IM₂ 的过程需 要克服的势垒为 316.84 kJ/mol。

Path 1 反应速控步骤为过渡态 TS_3 (势垒为 266. 69 kJ/mol);Path 2 反应速控步骤为过渡态 TS_7 (势垒为 180. 90 kJ/mol);路径 Path 3 反应速控步骤 为过渡态 TS_9 (势垒为 316. 84 kJ/mol)。显然,生成 SO_2 的 3 条路径中,Path 2 速控步骤的反应能垒比 Path 1 和 Path 3 的反应能垒低 85. 79 kJ/mol 和 135. 94 kJ/mol。因此,Path 2 优于其他两条反应路 径。

(2)苯硫酚氧化生成 SO 的路径。

Path 4:中间体 IM₁ 经过 H 原子的 S—O 邻位迁 移形成更稳定的中间体 IM₂, IM₁→IM₂ 中间经过过渡 态 TS₁, 这一过程的势垒为 119.86 kJ/mol, 中间体 IM₁ 很容易异构化为中间体 IM₂。中间体 IM₂ 经过 O—S 键拉长的过渡态 TS₄(O—S 键长达到 2.400× 10⁻¹⁰ m), 异构化为中间体 IM₄, 由 IM₂→IM₄ 的势垒 为 162.80 kJ/mol。中间体 IM₄, 由 IM₂→IM₄ 的势垒 为 3.29 kJ/mol。中间体 IM₅, 由 IM₄→IM₅ 的势垒 为 3.29 kJ/mol。中间体 IM₅ 经过 H 原子的 C—C 邻 位迁移异构化为产物 P₂, 中间经过过渡态 TS₆, 由 IM₅→P₂ 的势垒为 174.38 kJ/mol。

Path 5 与 Path 4 相比,由反应物 $R \rightarrow IM_2$ 的过程 经过过渡态 TS_9 ,这一过程需要克服的势垒较高 (316.84 kJ/mol)。

Path 4 反应速控步骤为过渡态 TS_6 (势全为 174.38 kJ/mol)。生成 SO 的两条路径中, Path 4 反 应速控步骤的反应能全比 Path 5 的反应能全低 142.46 kJ/mol。因此, Path 4 优于 Path 5。Path 4 与 生成 SO₂ 的路径 Path 2 相比, 其速控步骤的反应能 全低 6.52 kJ/mol。因此, Path 4 优于 Path 2。 (3)苯硫酚氧化生成 HSO 的路径。

Path 6:这一反应路径为基元反应,反应物 R 中的 S 原子与 O_2 分子结合,经过一过渡态 TS_8 ,异构化得到产物 P_3 ,由 R \rightarrow P₃ 的势垒为 316.60 kJ/mol。

Path 6 反应速控步骤的反应能 全为 316.60 kJ/ mol。与生成 SO₂ 的路径 Path 2 和生成 SO 的路径 Path 4 相比, Path 6 是最难的一条反应路径。

3 结 论

(1)经过计算可知,煤中苯硫酚型有机硫与氧的 反应主要有 6 条反应路径。其中,路径 Path 4(R→ $IM_1 \rightarrow TS_1 \rightarrow IM_2 \rightarrow TS_4 \rightarrow IM_4 \rightarrow TS_5 \rightarrow IM_5 \rightarrow TS_6 \rightarrow P_2$)是 最容易发生的反应路径,其次就是路径 Path 2(R→ $IM_1 \rightarrow TS_7 \rightarrow P_1$)。

(2)煤中苯硫酚型有机硫与氧的反应主要有 3 种产物,分别为 SO₂,SO,HSO。其中,SO 是反应的主要产物,SO₂ 是反应的次要产物,HSO 是反应最难生成的产物。

(3)煤中苯硫酚结构与氧气发生氧化反应,至少 需要从外界吸收 174.43 kJ/mol 的能量。

参考文献:

- Gryglewicz G, Jasieńko S. Sulfur groups in the cokes obtained from coals of different ranks [J]. Fuel Process. Technol. , 1988, 19(1): 51-59.
- [2] Miura K, Mae K, Shimada M, et al. Analysis of formation rates of sulfur-containing gases during the pyrolysis of various coals[J]. Energ. Fuel, 2001, 15(3):629-636.
- [3] 孙成功,李保庆,Snape C E. 煤中有机硫形态结构和热解过程硫 变迁特性的研究[J]. 燃料化学学报,1997,25(4):358-362.
 Sun Chenggong,Li Baoqing, Snape C E. Characterization of organic sulfur forms in some chinese coals by high pressure TPR and sulphur transfer during hydropyrolysis [J]. Journal of Fuel Chemistry and Technology,1997,25(4):358-362.
- [4] 谢建军,杨学民,吕雪松,等. 煤热解过程中硫氮分配及迁移规 律研究进展[J]. 化工进展,2004,23(11):1214-1218.
 Xie Jianjun, Yang Xuemin, Lü Xuesong, et al. Progress on transformation behavior of sulfur and nitrogen during coal pyrolysis [J]. Chemical Industry and Engineering Progress,2004,23(11):1214-1218.
- [5] 李金亮,陆 伟,徐 俊.化学阻化剂防治煤自燃及其阻化机理 分析[J].煤炭科学技术,2012,40(1):50-53.

Li Jinliang, Lu Wei, Xu Jun. Coal spontaneous combustion prevention and cure with chemical retarder as well as analysis on retarding mechanism[J]. Coal Science and Technology, 2012, 40(1):50-53.

[6] Kriehko A A, Gagarin S G. New ideas of coal organic matter chemical structure and mechanism of hydrogenation Processes [J]. Fuel, 1990,69(7):885-891.

 [7] 邓存宝. 煤的自燃机理及自燃危险性指数研究[D]. 阜新:辽宁 工程技术大学,2006.
 Deng Cunbao. Study on coal spontaneous combustion mechanisms and the spontaneous combustion danger index[D]. Fuxin: Liaoning

and the spontaneous combustion danger index [D]. Fuxin: Liaoning Technical University, 2006.

- [8] 邓存宝,王继仁,邓汉忠,等.氧在煤表面—CH₂—NH₂ 基团上的 化学吸附[J].煤炭学报,2009,34(9):1234-1238.
 Deng Cunbao, Wang Jiren, Deng Hanzhong, et al. Chemical adsorption of O₂ adsorbed in the coal surface —CH₂—NH₂ group[J]. Jounal of China Coal Society,2009,34(9):1234-1238.
- [9] 邓存宝,王雪峰,王继仁,等. 煤表面含 S 侧链基团对氧分子的物理吸附机理[J]. 煤炭学报,2008,33(5):556-560.
 Deng Cunbao, Wang Xuefeng, Wang Jiren, et al. Physical adsorption mechanism of coal surface containing sulfur group adsorption to more oxygen molecule[J]. Journal of China Coal Society, 2008, 33(5): 556-560.
- [10] 邓存宝,王继仁,叶 兵,等. 煤表面对单氧分子的物理吸附机 理[J].中国矿业大学学报,2008,37(2):171-175.
 Deng Cunbao, Wang Jiren, Ye Bing, et al. Physical mechanism of a single oxygen molecule adsorbs to the coal surface [J]. Journal of China University of Mining & Technology,2008,37(2):171-175.
- [11] 黄 充,张军营,陈 俊,等.煤中噻吩型有机硫热解机理的量 子化学研究[J].煤炭转化,2005,28(2):33-35.
 Hang Chong, Zhang Junying, Chen Jun, et al. Quantum chemistry study on the pyrolysis of thiophene functionalities in coal[J]. Coal Conversion, 2005, 28(2):33-35.
- [12] Humphreys D. The spontaneous heating of coal and its relation to petrography composition [D]. Brisbane: The University of Queensland, 1976.
- [13] 李增华.煤炭自燃的自由基反应机理[J].中国矿业大学学报, 1996,25(3):111-114.
 Li Zenghua. Mechanism of free radical reactions in spontaneous combustion of coal[J]. Journal of China University of Mining & Technology, 1996,25(3):111-114.
- [14] 陆 伟,胡千庭.煤低温氧化结构变化规律与煤自燃过程之间的关系[J].煤炭学报,2007,32(9):939-944.
 Lu Wei, Hu Qianting. Relation between the change rules of coal structures when being oxidized and spontaneous combustion process of coal[J]. Journal of China Coal Society,2007,32(9):939-944.
- [15] 文 虎,徐精彩,李 莉,等.煤自燃的热量积聚过程及影响因素分析[J].煤炭学报,2003,28(4):370-374.
 Wen Hu,Xu Jingcai,Li Li, et al. Analysis of coal self-ignite heat accumulating process and its effect factor[J]. Jounal of China Coal Society,2003,28(4):370-374.
- [16] 李金帅,王德明,仲晓星,等. 低温阶段程序升温法对煤氧化过程影响的研究[J]. 中国安全科学学报,2011,21(5):72-76.
 Li Jinshuai, Wang Deming, Zhong Xiaoxing, et al. Effect of temperature rising programmed test on process of coal oxidation in low temperature stage[J]. China Safety Science Journal, 2011,21(5): 72-76.