文章编号:0253-9993(2005)05-0627-05

不同粒度煤粉对 N_1^{2+} 的吸附特性

刘转年¹,周安宁²,金奇 $ext{a}$ 奇 $ext{a}$ ³

(1. 西安科技大学 地质与环境工程系,陕西 西安 710054; 2. 西安科技大学 化学与化工学院,陕西 西安 710054; 3. 西安建筑科技大学 环境与市政工程学院,陕西 西安 710055)

摘 要:通过筛分和高能球磨得到不同粒度的煤粉,研究了粒度变化对水溶液中 N_1^2 *的吸附性能的影响和吸附机理.结果表明:不同粒度煤粉对 N_1^2 *的吸附符合二级吸附动力学,其吸附过程由孔隙内扩散控制,求出了有效扩散系数.得出不同粒度煤粉对 N_1^2 *的吸附量随粒径的减小呈指数关系增加;粒径为 9.30,4.28和 4.82 μ m煤粉对 N_1^2 *的吸附符合 Freundlich吸附等温式. 关键词:不同粒度煤粉; N_1^2 *;吸附特性 中图分类号: TQ520.61 文献标识码: A

Adsorption properties of $N\hat{i}^+$ for different granularity coal powders

L U Zhuan-nian¹, ZHOU An-ning², J N Q i-ting³

(1. Dept of Geology and Environment Engineering, Xi an University of Science & Technology, Xi an 710054, China; 2 Dept of Chemistry and Chemical Engineering, Xi an University of Science & Technology, Xi an 710054, China; 3 School of Environmental & Municipal Engineering, Xi an University of Architecture & Technology, Xi an 710055, China)

Abstract: Different granularity coal powders were obtained by sieving and high energy ball milling, the adsorption mechanism and effect of granularity variety on $N_{1}^{2^{+}}$ adsorption were studied. The result shows that the kinetic of $N_{1}^{2^{+}}$ for coal powders fit second order kinetic model, the adsorption process is controlled by pore diffusion, the effective diffusion coefficient were calculated $N_{1}^{2^{+}}$ adsorption capacity exponentially increased when coal powders diameter decreased. The $N_{1}^{2^{+}}$ adsorption equilibrium of diameter 9.30, 4.28 and 4.82 µm coal powders can be described in terms of Freundlich isotherm.

Key words: different granularity coal powders; $N_1^{2^+}$; adsorption properties

煤是一种芳香大分子有机矿物岩石,内部有丰富的孔隙结构,其分子结构中含有多种含氧官能团,可 以与吸附质形成氢键、电子授受等相互作用,是一种天然吸附剂.煤吸附剂被用于去除废水中多种污染物 质如: Cr^{6+} , Cr^{3+} , Nr^{2+} , Cd^{2+} , Hg^{2+} , Cu^{2+} , Zn^{2+} , Pb^{2+} ,¹⁶⁹ Yb、苯酚、对硝基苯酚、活性染料和非离 子表面活性剂等.但这方面的研究工作大多集中在常规粒度煤粉吸附性能的研究上,对于超细煤粉的吸附 性能的研究未见报道.煤在超细粉碎过程中随粒度的减小,比表面积增加^[1],表面官能团增加,表面活 性增强,这些都有利于煤的吸附性能的提高.重金属离子 Nr^{2+} 的主要工业污染来源是采矿、冶炼、电镀 等工业排放的废水和废渣.本文选用孔隙率和表面官能团丰富的神府煤为原料,研究了超细煤粉的粒度变 化对水溶液中 Nr^{2+} 的吸附性能的影响和吸附机理,这对探索煤炭利用的新途径、开发制备高性能煤基吸 附剂等有重要意义.

收稿日期: 2004 - 12 - 29

基金项目: 陕西省自然科学基金资助项目 (2001C37).

作者简介:刘转年 (1968 -),男,陕西富平人,博士. Tel: 029 - 85583188, E - mail: zhuannianliu@163. com

1 吸附理论

1.1 吸附动力学

(1) Lagergren一级吸附动力学方程^[2,3] 基于固体吸附量的 Lagergren一级吸附动力学方程是应用最 普遍的吸附动力学方程,其直线形式为

$$\lg (q_e - q_t) = \lg q_e - \frac{k_1}{2.303}t_t$$

式中, q_a 为平衡吸附量, mg/g, q_i 为 *i*时的吸附量, mg/g, k_i 为一级吸附速率常数, L/min

以 $lg(q_e - q_i)$ 对时间 t作图如果能得到一条直线,说明其吸附机理符合一级吸附动力学模型.

(2) 二级吸附动力学方程^[4,5] 基于固体吸附量的二级吸附动力学方程为

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e}$$

式中, k_2 为二级吸附速率常数, $g/(mg \cdot min)$.

如果吸附过程符合二级吸附动力学模型,则以 t/q,~t作图,可得到一条直线.

1.2 颗粒内有效扩散系数

根据煤粉吸附 N_{1}^{2+} 的动力学数据,可求出不同吸附时间的平衡接近率 E, 即

$$E \quad \frac{q_{t}}{q_{e}} = 1 - \frac{6}{2} \frac{1}{n^{2}} \exp \left(- \frac{n^{2}}{\frac{2}{p_{0}}} D_{iq} \right) t,$$

式中, D_{is} 为颗粒内的有效扩散系数, 10^{-12} cm²/s, r_{0} 为颗粒半径, cm.

由平衡接近率与无因次时间 $(D_{iq} t/t_0^2)$ 之间关系表^[6],查出不同吸附时间的无因次时间值,以各 *E* 所对应之 t与无因次时间值作图得一直线. 由其斜率及 t_0 可求得 D_{iq} . 直线通过原点,吸附过程由颗粒内 扩散控制,否则由膜扩散控制.

1.3 吸附等温式

(1) Langnuir吸附等温式 Langnuir吸附等温式的直线形式为

$$\frac{1}{q_{\rm e}} = \frac{1}{Q^0} + \frac{1}{bQ^0} \frac{1}{C_{\rm e}}$$

(2) Freundlich吸附等温式 Freundlich吸附等温式的直线形式为

$$\lg q_{\rm e} = \lg K_{\rm F} + \frac{1}{n} \lg C_{\rm e}$$

式中, Q^0 为单分子层饱和吸附容量, mg/g, b, K_F , n为常数.

2 试验部分

(1) 试验原料与仪器 试验所用原料为神府煤,其工业及元素分析按国家有关标准进行.原料煤经 过粉碎后过筛,得到 1,2和 3号煤粉.将 3号煤粉在行星球磨机上分别真空球磨 0.5,3,6,9 h得到 4, 5,6,7号超细煤粉.

煤粉粒度在欧美克 LS - POP ()型激光粒度分析仪上进行,煤粉透射电镜分析在日本电子公司生产的 JBM - 100SX 透射电子显微镜上进行.其它仪器有 742 微机型可见分光光度计、康氏电动振荡机、501型超级恒温器等.氯化镍及分析用试剂均为分析纯.

(2) 试验方法和内容 吸附动力学试验:取一定浓度的 N i^{2+} 溶液倒入锥形瓶中,加入一定量的煤 粉样品,振荡不同时间后抽滤分离,收集滤液测定剩余 N i^{2+} 浓度并计算吸附量. 吸附等温线试验:取 相同体积不同浓度的 N i^{2+} 溶液,加入相同质量的煤粉,在恒温水浴中搅拌 6 h、静置 18 h后抽滤分离,收 集滤液测定剩余 N i^{2+} 浓度并计算吸附量. 水中 N i^{2+} 采用丁二酮肟光度法测定.

3 结果与讨论

(1)超细煤粉的透射电镜 (TEM)分析 神府煤的工业及元素分析见表 1. 由表 1可以看出,神府煤的高挥发分说明神府煤中有机物含量较高,表面含氧官能团较多,化学活性好. 试验用煤粉的粒度见表
2. 经不同时间球磨后超细煤粉的透射电镜照片如图 1所示. 由图 1可以看出,煤粉粒度随球磨时间的增加先减小,后因团聚粒度略有增加.

		Table	e 1 The pro	oxinate and ultin	na te ana lysis o	of Shenfu coal		%
工业分析				 元 素 分 析				
$M_{\rm ad}$	A _d	$V_{\rm daf}$	FC _d	$w(S_{t,d})$	$w(C_{daf})$	$w(H_{daf})$	$w(N_{daf})$	$w(O_{daf})$
7.29	4.27	36.42	60.87	0.38	81.75	4.79	1.10	11.95

表 1 神府煤的工业和元素分析

		-				
煤粉号	d_{10} /µm	d_{25} /µm	<i>d</i> ₅₀ /µm	<i>d</i> ₇₅ /µm	<i>d</i> ₉₀ /µm	比表面积 /m ² · cm ⁻³
1	32.41	81.51	108.71	131.89	146.83	0.17
2	8.58	19.61	34.69	49.93	64.93	0.32
3	2.47	5.00	9.30	16.10	21.16	0.98
4	1.93	2.56	4.58	6.39	8.07	1.70
5	1.79	2.85	4.28	5.94	7.56	1.93
6	1.75	2.74	4.06	5.58	7.04	2.00
7	1.88	3.10	4.82	6.84	8.84	1.79

表 2 煤粉的粒度分布 Table 2 The particle size distribution of Shenfu coal powders

注: d10, d25, d50, d75, d90表示累积 10%, 25%, 50%, 75%, 90%粒径.

图 1 超细煤粉的 TEM 分析 Fig. 1 TEM of superfine coal powders

(2)吸附动力学 不同时间煤粉的 N_{1}^{2+} 吸附量与吸 附时间关系如图 2 所示. 由图 2 可以看出,各煤粉的 N_{1}^{2+} 吸附量随时间的延长逐渐增加,后基本趋于稳定,吸 附达到平衡. 当煤粉粒径从 108.71 μ m 减小到 4.28 μ m 时,相同时间 N_{1}^{2+} 吸附量明显增大. 粒径为 4.06和 4.82 μ m煤粉的 N_{1}^{2+} 吸附量与粒径为 4.28 μ m煤粉无明显差 别,这是由于颗粒间的团聚. 将不同时间吸附后煤粉的 N_{1}^{2+} 吸附量与吸附时间分别用 Lagergren一级吸附动力学 方程和二级吸附动力学方程进行回归处理,数据见表 3. 由表 3可知,7种不同粒度煤粉吸附 N_{1}^{2+} 的动力学数据对

表 3	不同粒度煤粉吸附	Ni ^{2⁺} 的动力学数据
-----	----------	-------------------------

Table 3 The first order and second order kinetic data of Ni²⁺ adsorption for differenct size coal powders

煤粉粒度	$q_{ m e}$	Lagergre	n一级吸附速率方	程	二级吸附速率方程			
d_{50} /µm	/mg • g ⁻¹	$k_1 / \times 10^{-2} \text{ m in}^{-1}$	$q_{\rm e,c}$ /mg · g ⁻¹	R^2	$k_2 / \times 10^{-2} \text{g} \cdot (\text{mg} \cdot \text{min})^{-1}$	$q_{\rm e,c}$ /mg \cdot g ⁻¹	R^2	
108.71	0.30	3.316	0.158	0.948	37.81	0.320	0.9995	
34.69	0.41	3.742	0.284	0.994	19.95	0.449	0.9992	
9.30	0.65	3.597	0.578	0.995	7.59	0.749	0.9992	
4.58	0.68	3.613	0.474	0.930	10.78	0.752	0.9988	
4.28	0.84	4.440	0.852	0.967	6.62	0.951	0.9977	
4.06	0.86	3.279	0.858	0. 992	4.54	1.010	0.9984	
4.82	0.85	4.684	0.930	0.968	3.47	1.057	0.9968	

(3) 有效扩散系数 不同粒度煤粉吸附 N²⁺的无 因次时间与时间关系如图 3所示,由图 3可以看出, 煤粉吸附 N²⁺的无因次时间与时间关系为通过原点的 直线,其吸附过程由颗粒内扩散控制.煤粉吸附 N²⁺ 的有效扩散系数见表 4.可以看出,煤粉吸附 N²⁺ 有效扩散系数随着煤粉粒度的减小而减小.

(4) 粒度与 N²⁺吸附量的关系 不同粒度煤粉的 粒径与煤粉 N²⁺吸附量之间的关系如图 4所示. 由图 4可以看出,随着煤粉粒度的减小,煤粉对 N²⁺的吸 附量开始逐渐增加,后急剧增加,煤粉对 N²⁺的吸附 能力增强. 经回归处理得到煤粉粒度与 N²⁺吸附量

图 3 煤粉吸附 N²⁺的时间和无因次时间的关系曲线

Fig. 3 $\frac{D_{iq}t}{2}$ vs. time plots of N i^{2+} adsorption on coal powders

表 4 不同粒度煤粉吸附 Ni²⁺颗粒内的有效扩散系数

		2.	
T-LL 4	T1		
	The effective diffusion	CONTRIPIENTS OF NI 9750F	nton for a tierent size coal nowders
Iana -	The encence ana son		pron for anterent size cour powders

煤粉粒径 d ₅₀ /µm	108.71	34.69	9.30	4.58	4.28	4.06	4.82
$D_{\rm iq}$ / ×10 ⁻¹² cm ² · s ⁻¹	1 807	180.5	11.17	3.05	2.82	1.79	3.49
R^2	0.961	0.997	0.990	0.998	0.954	0.984	0.955

Fig. 4 The plot of particle size vs. adsorption capacity

关系式为

 $q_{\rm e} = 0.649 \ 3{\rm e}^{-d_{50}/15.993 \ 3} + 0.311 \ 9, \ R^2 = 0.927.$

(5)吸附等温线 选择 3种粒度煤粉研究其对 N_{1}^{2+} 的吸附平衡,煤粉对 N_{1}^{2+} 的吸附等温线如图 5所示. 将平衡 数据用 Langmuir和 Freundlich吸附等温线回归结果见表 5. 由表 5可以看出,粒径为 9.30, 4.28, 4.82 µm的煤粉对 N_{1}^{2+} 的吸附均符合 Freundlich吸附等温式, n分别为 1.37, 2.01和 1.96,均大于 1,为优惠吸附. N. Ortiz等^[7]用炼钢 炉渣吸附剂吸附水溶液中 N_{1}^{2+} 的吸附等温线符合 Freundlich 吸附等温式,相关常数 $K_{\rm F}$ = 8.1, n = 2.8. 而 K. Periasamy

图 5 不同粒度煤粉吸附 N i²⁺的吸附等温线 (25) Fig. 5 Isotherm of phenol adsorption for different size coal powders (25) 等^[8]用花生壳制备的吸附剂吸附水溶液中 N_{1}^{2+} ,吸 附过程符合 Langmuir, Freundlich吸附等温式, Freundlich常数 K_{F} 和 n分别为 32.73和 8.4.

表 5 超细煤粉吸附 N²⁺的吸附等温线回归数据 (25) Table 5 Langmuir and Freundlich constants of N²⁺

adsorption on superfine coal powders (25)

煤粉粒度	Langnuir			Freundlich		
d_{50} /µm	Q^0	b	R^2	$K_{\rm F}$	п	R^2
9.30	3.236	0.03	0.957	0.124	1.37	0.968
4.28	3.145	0.12	0.864	0.463	2.01	0.897
4.82	3.322	0.13	0.865	0.467	1.96	0.914

4 结 论

(1) 7种不同粒度煤粉对 N²⁺的吸附符合二级吸附动力学.

(2) 随煤粉粒径的减小,煤粉对 N₁²⁺的吸附量呈指数关系增加,二者符合: $q_e = 0.649 \ 3e^{-d_{50}/15.993 \ 3} + 0.311 \ 9.$

(3) 煤粉吸附 Ni²⁺的过程由颗粒内扩散控制.

(4) 粒径为 9.30, 4.28, 4.82 µm 煤粉对 N²⁺的吸附符合 Freundlich吸附等温式, n分别为 1.37, 2.01和 1.96, 均大于 1, 为优惠吸附.

参考文献:

- Jiang Xiumin, Zheng Chugang, Yan Che, et al Physical structure and combustion properties of super fine pulverized coal particle [J]. Fuel, 2002, 81: 793 ~ 797.
- [2] Mathialagan T, Viraraghavan T Adsorption of cadmium from aqueous solution by perlite [J]. Journal of Hazardous Materials, 2002, B 94: 291 ~ 303.
- [3] Namasivayam C, Yamuna R T. Adsorption of direct red 12B by biogas residual slurry: equilibrium and rate processes [J]. Environmental Pollution, 1995, 89: 1~7.
- [4] Ho Y S, Mckay G Pseudo-second order model for sorption process [J]. Process Biochemistry, 1999, 34: 451 ~ 465.
- [5] Otero M, Rozada F, Calvo L F, et al Kinetic and equilibrium modelling of the methylene blue removal from solution by adsorbent materials produced from sewage sludges [J]. Biochemical Engineering Journal, 2003, 15: 59~68.
- [6] Dines Mohan, Gupta V K, Srivastava S K, et al Kinetics of mercury adsorption from wastewater using activated carbon derived from fertilizer waste [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 177: 169 ~ 181.
- [7] Ortiz N, Pires M A F, Bressiani J C Use of steel converter slag as nickel adsorber to wastewater treatment [J]. Waste Management, 2001, 21: 631 ~ 635.
- [8] Periasamy K, Namasivayam C. Removal of nickel () from aqueous solution wastewater using an agricultural waste: peanut hulls [J]. Waste Management, 1995, 15 (1): 63~68.