

C				My J-STAGE Sign in
Journa the Ja	l of panese Association for The Japane	Petroleum Te se Association for	chnology Petroleum Techn	ology
<u>Available Issues</u> <u>Ja</u>	ipanese		>	>> Publisher Site
Author:	ADVANC	ED Volume	Page	
Keyword:	Search			Go
	Add to Favorite/Citation Articles Alerts	Add to Favorite Publication	ns Regist	er ?MyJ-STAGE HELP

<u>TOP</u> > <u>Available Issues</u> > <u>Table of Contents</u> > Abstract

ONLINE ISSN : 1881-4131 PRINT ISSN : 0370-9868

Journal of the Japanese Association for Petroleum Technology

Vol. 72 (2007), No. 6 pp.585-593

[PDF (4186K)] [References]

Reservoir evaluation using carbon isotope composition of gas

Amane Waseda¹⁾ and Hirotsugu Iwano¹⁾

1) JAPEX Research Center, Japan Petroleum Exploration Co., Ltd.

(Received September 6, 2007) (Accepted November 9, 2007)

Abstract: Carbon isotope compositions of methane, ethane and propane, and hydrocarbon ratios in gas samples provide information of their origin (microbial vs. thermogenic), maturity of thermogenic component, compositional change due to migration, and extent of biodegradation. Mixing of gases with different origins or different maturities can also be evaluated using gas isotopic and molecular compositions. While these gas geochemical data have been used mainly for petroleum exploration, their applications for development, production and operation issues are also increasing. Headspace gas analyses can be used to delineate reservoir compartments and pay zones. Carbon isotope compositions in commingled production could be used to allocate contributions form individual production zones if isotopic differences exist between the gases from the contributing reservoirs. Origin of gas seepage in production sites could be investigated by the gas molecular and isotope compositions if enough reference data exist in the area.

Key words: gas, carbon isotope, origin, maturity, migration, biodegradation, reservoir compartment, commingled production, reservoir geochemistry

[PDF (4186K)] [References]

Download Meta of Article[<u>Help</u>] RIS To cite this article:

Amane Waseda and Hirotsugu Iwano 2007: Reservoir evaluation using carbon isotope composition of gas , J. JAPANESE. ASSOC. PETROL. TECHNOL., **72**: 6, 585-593 .

doi:10.3720/japt.72.585 JOI JST.JSTAGE/japt/72.585

Copyright (c) 2008 The Japanese Association for Petroleum Technology

