

Jou	rnal of the Japan I	Petroleum Institute
5 7		The Japan Petroleum Institute
Available Issues Inst	ructions to Authors Japanese	>> Publisher Site
Author:	<u>ADVANCED</u> Volu	ume Page
Keyword:	Search	Go
	Add to Favorite/Citation Add the Favorite Add the Favorite Add the Favorite Articles Alerts	to Prite Register My J-STAGE Alerts PHELP

TOP > **Available Issues** > **Table of Contents** > **Abstract**

ONLINE ISSN: 1349-273X PRINT ISSN: 1346-8804

Journal of the Japan Petroleum Institute

Vol. 48 (2005), No. 5 pp.251-259

[PDF (225K)] [References]

Liquid Fuel Production Using Microalgae

Kenichiro Tsukahara¹⁾ and Shigeki Sawayama¹⁾

1) Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology

(Received: March 7, 2005)

Recently, biomass has attracted much attention as a renewable energy resource. Microalgae are particularly promising biomass species because of the high growth rate and high CO_2 fixation ability compared to plants. Effective liquid fuel production from microalgae was studied using *Botryococcus braunii* and *Dunaliella tertiolecta*, which accumulated terpenoid hydrocarbon and glycerol, respectively. *B. braunii* could remove nitrogen and phosphorus from secondarily treated sewage (STS) in a batch system and a continuous bioreactor system with hydrocarbon production. The intracellular glycerol content could be controlled by post-translational modifications in *D. tertiolecta*. *B. braunii* is more profitable for liquid fuel production than *D. tertiolecta* based on calculating the energy balance.

Keywords: Biomass, *Botryococcus braunii*, *Dunaliella tertiolecta*, Energy balance, Liquid fuel production, Microalgae

[PDF (225K)] [References]

Download Meta of Article[Help]

To cite this article:

Kenichiro Tsukahara and Shigeki Sawayama, *Journal of the Japan Petroleum Institute*, Vol. 48, No. 5, p.251 (2005) .

doi:10.1627/jpi.48.251 JOI JST.JSTAGE/jpi/48.251

Copyright (c) 2005 by The Japan Petroleum Institute

Japan Science and Technology Information Aggregator, Electronic

