JSTAGE	My J-STAGE Sign in
Journal of the Japan Pe	troleum Institute
Available Issues Instructions to Authors Japanese	>> <u>Publisher Site</u>
Author: ADVANCED Volume Keyword: Search Image: Constraint of the search	Page Go
Add to Favorite/Citation Add to Articles Alerts Publication	ons Register ?My J-STAGE Alerts HELP
<u>TOP</u> > <u>Available Issues</u> > <u>Table of Contents</u> > Abstract	
	ONLINE ISSN : 1349-273X
Journal of the Japan Petroleum Institute	1 1111 1 15511. 1540-0004

Vol. 46 (2003), No. 6 pp.383-386

[PDF (898K)] [References]

Optimization of Cu-based Oxide Catalyst for Methanol Synthesis by the Activity Map Envelope Derived from a Neural Network

<u>Kohji OMATA¹</u>, <u>Masahiko HASHIMOTO¹</u>, <u>Yuhsuke WATANABE¹</u>, <u>Tetsuo</u> <u>UMEGAKI¹</u> and <u>Muneyoshi YAMADA¹</u>

1) Dept. of Applied Chemistry, Graduate School of Engineering, Tohoku University

(Received: May 26, 2003)

The combinatorial approach is a successful tool for material development and for heterogeneous catalyst development. Combinatorial tools were developed consisting of a high-throughput screening reactor using a 96-well microplate, activity mapping by a neural network and optimization by a genetic algorithm. The tools were designed and manufactured to optimize Cu-based oxide catalyst for methanol synthesis. Escape from local optima in the search space is easy by GA, but the efficiency of search is not so high. Instead of GA, a more straight-forward method was applied: all 230, 000 activities of all possible combinations of catalyst components with 5% resolution were predicted by a neural network. These activities were visualized by mapping using two parameters, such as Cu and Zn composition, to find the global optimum.

Keywords: Combinatorial chemistry, High-throughput screening, Genetic algorithm, Neural network, 96 well microplate, Methanol synthesis catalyst

[PDF (898K)] [References]

To cite this article:

Kohji OMATA, Masahiko HASHIMOTO, Yuhsuke WATANABE, Tetsuo UMEGAKI and Muneyoshi YAMADA, *Journal of the Japan Petroleum Institute*, Vol. **46**, No. 6, p.383 (2003).

doi:10.1627/jpi.46.383 JOI JST.JSTAGE/jpi/46.383

Copyright (c) 2004 by The Japan Petroleum Institute

