

c/p/ Jo	ournal of the Japan	Petroleum	Institute
0 //		The Japan	Petroleum Institute
Available Issues In	structions to Authors Japanese		>> <u>Publisher Site</u>
Author:	<u>ADVANCED</u> Vol	ume Page	
Keyword:	Search		Go
	Add to Favorite/Citation Add Favorite Alerts	to prite lications	ter ? My J-STAGE HELP

 $\underline{\text{TOP}} > \underline{\text{Available Issues}} > \underline{\text{Table of Contents}} > \underline{\text{Abstract}}$

ONLINE ISSN: 1349-273X PRINT ISSN: 1346-8804

Journal of the Japan Petroleum Institute

Vol. 46 (2003), No. 5 pp.328-334

Cited JST Link Center

[PDF (610K)] [References]

Catalyst Development for Methanol Synthesis Using Parallel Reactors for High-throughput Screening Based on a 96 Well Microplate System

<u>Kohji OMATA</u>¹⁾, <u>Yuhsuke WATANABE</u>¹⁾, <u>Tetsuo UMEGAKI</u>¹⁾, <u>Masahiko HASHIMOTO</u>¹⁾ and <u>Muneyoshi YAMADA</u>¹⁾

1) Dept. of Applied Chemistry, Graduate School of Engineering, Tohoku University (Received: April 14, 2003)

The combinatorial approach is widely used for homogeneous and heterogeneous catalyst development. The main key technologies are "combinatorial chemistry (CC)" for material preparation and "high-throughput screening (HTS)" for rapid assay using automated and/or robotic equipment. A HTS reactor with 96 parallel lines was designed and manufactured to optimize the Cu-Zn catalyst for methanol synthesis. A neural network (NN) was constructed from the "catalyst composition-activity" dataset obtained by the HTS reactor. The catalyst composition was optimized by a genetic algorithm combined with the trained NN. Active Cu-Zn catalysts for methanol synthesis under CO₂ rich syngas were discovered by these combinatorial tools.

Keywords: Combinatorial chemistry, High-throughput screening, Genetic algorithm, Neural network, 96 well microplate, Methanol synthesis

[PDF (610K)] [References]

Download Meta of Article[Help]

To cite this article:

Kohji OMATA, Yuhsuke WATANABE, Tetsuo UMEGAKI, Masahiko HASHIMOTO and Muneyoshi YAMADA, Journal of the Japan Petroleum Institute, Vol. 46, No. 5, p.328 (2003).

doi:10.1627/jpi.46.328

JOI JST.JSTAGE/jpi/46.328

Copyright (c) 2004 by The Japan Petroleum Institute

Japan Science and Technology Information Aggregator, Electronic JSTAGE

