

 $\underline{\text{TOP}} > \underline{\text{Available Issues}} > \underline{\text{Table of Contents}} > \underline{\text{Abstract}}$

ONLINE ISSN: 1349-273X PRINT ISSN: 1346-8804

Journal of the Japan Petroleum Institute

Vol. 46 (2003), No. 5 pp.339-342

[PDF (123K)] [References]

Fischer-Tropsch Synthesis over Metal-promoted $\operatorname{Co-Ir-SiO}_2$ Catalysts Prepared by the Alkoxide Method

Mingdeng WEI¹⁾, Kiyomi OKABE¹⁾ and Hironori ARAKAWA¹⁾

1) National Institute of Advanced Industrial Science and Technology (Received: February 10, 2003)

A series of metal-promoted 20 wt%Co-0.5 wt%Ir-SiO₂ catalysts was prepared by the alkoxide method, and the effects of additives (MO_x ; M = K, Cr, Al, Ce, La, and Mn) on the catalysis of Fischer-Tropsch reaction were investigated. K-Promoter reduced CO conversion. Al- or Cr-promoter resulted in almost the same CO conversion as over the catalyst without additives, but CH_4 selectivity increased. La- or Ce-promoter decreased C_{5+} selectivity. In contrast, CO conversion and the α -value (the chain growth probability of CH_x intermediates) increased up to 57% and 0.85, respectively, over catalysts with 10 wt% Mn promoter. However, further addition of Mn caused deactivation of the catalyst. Selectivity for CH_4 showed a linear relationship with the standard enthalpy of formation (- ΔH_f^0) of the promoter oxides (MO_x).

Keywords: Additive, Alkoxide method, Cobalt catalyst, Fischer-Tropsch reaction, Solgel method

To cite this article:

Mingdeng WEI, Kiyomi OKABE and Hironori ARAKAWA, Journal of the Japan Petroleum Institute, Vol. 46, No. 5, p.339 (2003).

doi:10.1627/jpi.46.339 JOI JST.JSTAGE/jpi/46.339

Copyright (c) 2004 by The Japan Petroleum Institute

Japan Science and Technology Information Aggregator, Electronic **JSTAGE**

