

ONLINE ISSN : 1349-273X PRINT ISSN : 1346-8804

Journal of the Japan Petroleum Institute

Vol. 46 (2003), No. 1 pp.53-61

[PDF (379K)] [References]

Oxidation of Isobutane to Methacrolein over $Ga_2O_3/Bi_2Mo_3O_{12}$ Catalysts

<u>Yoshiaki OBANA¹⁾, Kouji YASHIKI¹⁾, Masami ITO²⁾, Hiroyasu NISHIGUCHI¹⁾, Tatsumi ISHIHARA¹⁾ and Yusaku TAKITA¹⁾</u>

1) Dept. of Applied Chemistry, Faculty of Enginnering, Oita University

2) Research and Development Center, Oita University

(Received: July 22, 2002)

Catalytic performance and the surface character of the Ga_2O_3 supported Bi-Mo complex

oxides were studied to achieve direct formation of methacrolein from isobutane. $Bi_2Mo_3O_{12}$ (α phase) and $Bi_2Mo_1O_6$ (γ phase) showed higher catalytic activity than $Bi_2Mo_2O_9$ (β phase) for isobutane partial oxidation. Supporting Ga_2O_3 , which is an active catalyst for dehydrogenation of hydrocarbons, onto the oxides, enhanced the catalytic activity.

The optimum amount of supported Ga_2O_3 on $Bi_2Mo_3O_{12}$ was about 3 wt% for methacrolein formation. In the presence of oxygen, a remarkable amounts of hydrogen over Ga_2O_3 during the isobutane oxidation but no hydrogen was formed over Ga_2O_3 / $Bi_2Mo_3O_{12}$. It is confirmed from TPR that Ga_2O_3 and $Bi_2Mo_3O_{12}$ were not reduced until 550°C but the reduction of $Ga_2O_3/Bi_2Mo_3O_{12}$ started at 350-380°C. The on-set temperature in TPR of the Bi-Mo complex oxides decreased to 350-380°C from 500°C by the supporting Ga_2O_3 onto the oxides, and the catalysts after TPR measurement are composed of BiO, Bi, and MoO_2 in addition to $Bi_2Mo_3O_{12}$. These results suggest that the hydrogen spillover took place over supported catalyst.

 $Ga_2O_3/Bi_2Mo_3O_{12}$ catalyst showed higher activity and high selectivity for methacrolein at 450°C. The improvement in the selectivity for methacrolein of the $Ga_2O_3/Bi_2Mo_3O_{12}$ may

be explained as following. Isobutane is adsorbed on the surface of Ga_2O_3 to form hydrogen atom and *t*-butyl fragment and both formed species migrates to $Bi_2Mo_3O_{12}$ surface. Migrated hydrogen may modify the $Bi_2Mo_3O_{12}$ surface property by the reaction with oxide ions, which is active for the deep oxidation resulting in high selectivity for methacrolein. In the non-aerobic oxidation of isobutane over the $Ga_2O_3/Bi_2Mo_3O_{12}$ catalyst, the

formation rate of CO_x significantly reduced, and methacrolein and isobutene were selectively obtained when the reduction degree of the catalyst was lower than 0.3% at 450° C.

Keywords: Isobutane oxidation, Methacrolein synthesis, Bismuth molybdate catalyst, Gallium oxide, Hydrogen spillover, Nonaerobic oxidation

[PDF (379K)] [References]

Download Meta of Article[<u>Help</u>] <u>RIS</u> <u>BibTeX</u>

To cite this article:

Yoshiaki OBANA, Kouji YASHIKI, Masami ITO, Hiroyasu NISHIGUCHI, Tatsumi ISHIHARA and Yusaku TAKITA, *Journal of the Japan Petroleum Institute*, Vol. **46**, No. 1, p.53 (2003).

doi:10.1627/jpi.46.53 JOI JST.JSTAGE/jpi/46.53

Copyright (c) 2004 by The Japan Petroleum Institute

