

Journal of the Japan Petroleum Institute

Vol. 46 (2003), No. 1 pp.69-76

[PDF (408K)] [References]

Gasification of Cellulose over Rh/CeO₂/SiO₂ Catalysts: Combustion of Coke and Reforming of Tar

<u>Keiichi TOMISHIGE¹</u>, <u>Tomohisa MIYAZAWA¹</u>, <u>Mohammad ASADULLAH¹, <u>Shin-ichi ITO¹</u> and <u>Kimio KUNIMORI¹</u></u>

1) Institute of Materials Science, University of Tsukuba

(Received: August 13, 2002)

The conventional methods for biomass gasification to hydrogen and synthesis gas are carried out at high temperature. Recently Rh/CeO_2 based catalysts has been shown to be very effective for the catalytic gasification of cellulose at low reaction temperatures. The catalyst performance of $Rh/CeO_2/SiO_2$ catalysts was investigated using a continuous feed fluidized bed reactor and cellulose as a model compound of biomass. The performance of the $Rh/CeO_2/SiO_2$ catalysts was very dependent on the loading amount of CeO_2 , so the optimum loading was determined. Furthermore, analysis of the product distribution over various catalysts suggests that coke is removed by combustion with oxygen and tar is converted to synthesis gas *via* the reforming reaction. The low temperature catalytic gasification of cellulose requires high catalyst activity for combustion and reforming, and our

Keywords: <u>Cellulose</u>, <u>Biomass</u>, <u>Gasification</u>, <u>Rhodium catalyst</u>, <u>Cerium oxide catalyst</u>, <u>Synthesis gas</u>

JST Link Cent

optimized catalyst showed adequate activities for both reactions.

Download Meta of Article[<u>Help</u>] <u>RIS</u> BibTeX

To cite this article:

Keiichi TOMISHIGE, Tomohisa MIYAZAWA, Mohammad ASADULLAH, Shin-ichi ITO and Kimio KUNIMORI, *Journal of the Japan Petroleum Institute*, Vol. **46**, No. 1, p.69 (2003).

doi:10.1627/jpi.46.69 JOI JST.JSTAGE/jpi/46.69

Copyright (c) 2004 by The Japan Petroleum Institute

