

[PDF (276K)] [References]

Skeletal Isomerization of *n*-Heptane to Clean Gasoline

Toshio Okuhara¹⁾

1) Graduate School of Environmental Earth Science, Hokkaido University

(Received: May 6, 2003)

Skeletal isomerization of *n*-heptane to clean gasoline can be catalyzed by solid acids such as zeolites, sulfated zirconia, heteropoly compounds, and WO₃/ZrO₂ and their Pt or Pd-modified catalysts (bifunctional catalysts). The catalytic properties of these catalysts for isomerizations of *n*-butane and *n*-pentane are generally reviewed. The activation steps of alkane and factors influencing the activity and selectivity are discussed. Our study on the reaction mechanism for the isomerization of *n*-butane using ¹³C-*n*-butane is interpreted. The bimolecular mechanism is the main contributor on solid acid catalysts (sulfated zirconia and Cs_{2.5}H_{0.5}PW₁₂O₄₀). In contrast, the monomolecular mechanism is predominant over the bifunctional catalysts in the presence of H₂. The reaction pathways of *n*-heptane isomerization are presented and the characteristics of this reaction are discussed. Recent reports and our data for the isomerization of *n*-heptane are summarized and discussed. Pt-Cs_{2.5}H_{0.5}PW₁₂O₄₀/SiO₂ and Pd-H₄SiW₁₂O₄₀/SiO₂ are comparable to Pt-H- β in selectivity to branched heptanes and the latter heteropoly catalyst has superior activity.

Keywords: <u>Skeletal isomerization</u>, <u>Heptane</u>, <u>Clean gasoline</u>, <u>Solid acid catalyst</u>, Bifunctional catalyst, Reaction mechanism

Download Meta of Article[Help]

To cite this article: Toshio Okuhara, *Journal of the Japan Petroleum Institute*, Vol. **47**, No. 1, p.1 (2004).

doi:10.1627/jpi.47.1 JOI JST.JSTAGE/jpi/47.1

Copyright (c) 2004 by The Japan Petroleum Institute

